This repository has been archived by the owner on Sep 2, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtest_bb_tear.py
194 lines (163 loc) · 6.71 KB
/
test_bb_tear.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# Copyright (C) 2015 University of Vienna
# All rights reserved.
# BSD license.
# Author: Ali Baharev <[email protected]>
from __future__ import print_function, division
from random import Random
from networkx import Graph
from networkx.algorithms.bipartite import is_bipartite_node_set
from bb_tear import solve_problem, _worst_cases
from order_util import coo_matrix_to_bipartite
from plot_ordering import to_pdf
from py3compat import irange, izip
from test_utils import create_rnd_bipartite, solve_difficult_for_ilp, \
solve_test_matrices
from testmatrices import create_difficult_pattern
from utils import print_timestamp, deserialize, marshal_load#, marshal_dump
def log(*args): pass
# log = print
def test_to_hessenberg_none_forbidden(n_eqs, n_vars, seed):
log('seed =', seed)
rng = Random(seed)
g, eqs = create_rnd_bipartite(n_eqs, n_vars, seed, rng, nonsing=False, c=3)
solve_problem(g, eqs)
log()
#def test_proxy(n_eqs, seed):
# test_nonsing_none_forbidden(n_eqs, seed)
#
#@profile
def test_nonsing_none_forbidden(n_eqs, seed):
log('seed =', seed)
rng = Random(seed)
g, eqs = create_rnd_bipartite(n_eqs, n_eqs, seed, rng, nonsing=True, c=3)
#serialize((g, eqs), DATADIR + 'ilp_poor_performance_c=5_r=2997.pkl.gz')
#plot_bipartite(g, eqs, forbidden)
solve_problem(g, eqs)
log()
#-------------------------------------------------------------------------------
def solve_difficult_for_bb():
filepath = 'data/worst_of_10M_runs/bb_bad_perf_n=10_c=0.5_1.pkl.gz'
g, eqs, _ = deserialize(filepath)
rowp, colp = solve_problem(g, eqs)[0:2]
to_pdf(g, rowp, colp)
#-------------------------------------------------------------------------------
#@profile
def naughty_brute_force():
for size in irange(3, 6):
print_timestamp()
print('Testing (naughty) bipartite graphs of size', size)
# serialized in test_utils, but optimums can be serialized here
#opts = [ ]
#opts = marshal_load('data/all_bips/opt_n'+str(size)+'.bin')
#all_edgelists = marshal_load('data/all_bips/bip_n'+str(size)+'.bin')
opts = marshal_load('data/bip_filt/opt_n'+str(size)+'.bin')
all_edgelists = marshal_load('data/bip_filt/filt_n'+str(size)+'.bin')
print('Loaded', len(all_edgelists), 'graphs')
print_timestamp()
#for edgelist in all_edgelists:
for i, (edgelist, opt) in enumerate(izip(all_edgelists, opts)):
assert len(edgelist) % 2 == 0
g = Graph()
g.add_edges_from(e for e in izip(edgelist[::2], edgelist[1::2]))
assert len(g) == 2*size
g.graph['name'] = str(i)
_, _, _, tear_set, _ = solve_problem(g, set(irange(size)))
assert opt == len(tear_set)
#---
#solve_problem(g, set(irange(size)))
#---
#opt = len(solve_problem(g, set(irange(size)))[3])
#opts.append(opt)
#---
#to_pdf(g, rowp, colp)
#assert len(opts) == len(all_edgelists)
#marshal_dump(opts, '/tmp/opt_n'+str(size)+'.bin')
print([t[0] for t in _worst_cases])
#print('Len:', len(_worst_cases))
_worst_cases.sort(key=sort_patterns)
# for i, (explored, g, _, rowp, colp, ub) in enumerate(_worst_cases, 1):
# msg = 'Index: ' + g.graph['name']
# fname = '{0:03d}a'.format(i)
# to_pdf(g, list(irange(size)), irange(size, 2*size), msg, fname)
# msg = 'OPT = {}, BT: {}'.format(ub, explored)
# fname = '{0:03d}b'.format(i)
# to_pdf(g, rowp, colp, msg, fname)
_worst_cases[:] = [ ]
print_timestamp()
print()
def sort_patterns(tup):
_, g, _, rowp, colp, ub = tup
c_index = { name : i for i, name in enumerate(n for n in colp) }
r_index = { name : i for i, name in enumerate(n for n in rowp) }
# Last occupied columns rowwise, empty rows allowed
adj = g.adj
last_elem = tuple(max(c_index[c] for c in adj[r]) if adj[r] else -1 for r in rowp)
n_rows = len(rowp)
# First occupied row columnwise
first_elem = tuple(min(r_index[r] for r in adj[c]) if adj[c] else n_rows for c in colp)
#
return ub, last_elem, first_elem, g.number_of_edges()
#-------------------------------------------------------------------------------
def difficult(size):
print('Solving patterns leading to many ties (backtracking) of size', size)
msg = 'Size: ' + str(size)
fname = '{0:03d}a'.format(size)
g = create_difficult_pattern(size)
to_pdf(g, list(irange(size)), irange(size, 2*size), msg, fname)
#
solve_problem(g, set(irange(size)))
#
explored, g, _, rowp, colp, ub = _worst_cases[0]
msg = 'OPT = {}, BT: {}'.format(ub, explored)
fname = '{0:03d}b'.format(size)
to_pdf(g, rowp, colp, msg, fname)
_worst_cases[:] = [ ]
print_timestamp()
def plot_dm_decomp(g, size):
rows, cols = [ ], [ ]
for u, v in g.edges_iter(irange(size)):
rows.append(u)
cols.append(v-size)
values = [1]*len(rows)
shape = (size, size)
g_dup, eqs, vrs = coo_matrix_to_bipartite(rows, cols, values, shape)
assert is_bipartite_node_set(g_dup, eqs)
assert is_bipartite_node_set(g_dup, vrs)
from dm_decomp import blt_with_tearing
msg = 'Size: {}'.format(size)
blt_with_tearing(rows, cols, values, shape, [size-1], [0], show=True, name=msg)
################################################################################
if __name__ == '__main__':
difficult(6)
difficult(8)
difficult(10)
difficult(12)
difficult(14)
#difficult(16)
#quit()
naughty_brute_force()
solve_difficult_for_bb()
solve_difficult_for_ilp(solve_problem, print)
solve_test_matrices(solve_problem, print)
#quit()
print('Started generative testing...')
import os
os.environ['HYPOTHESIS_STORAGE_DIRECTORY'] = '/tmp/ht'
from hypothesis import given, Settings
from hypothesis.strategies import integers
MAX_VALUE = 12
MAX_EXAMP = 1000
decor = given(n_eqs = integers(min_value=1, max_value=MAX_VALUE),
n_vars = integers(min_value=0, max_value=MAX_VALUE),
seed = integers(min_value=0),
settings = Settings(max_examples=MAX_EXAMP))
decor(test_to_hessenberg_none_forbidden)()
#-----------------------------------------
SIZE = 12
MAX_EXAMP = 1000
decor = given(n_eqs = integers(min_value=SIZE, max_value=SIZE),
seed = integers(min_value=0),
settings = Settings(max_examples=MAX_EXAMP, timeout=3600))
print('### Nonsingular ###')
decor(test_nonsing_none_forbidden)()
print('Done!')