-
Notifications
You must be signed in to change notification settings - Fork 16
/
StaggeredTreatment_DiffTE.do
175 lines (146 loc) · 7.65 KB
/
StaggeredTreatment_DiffTE.do
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
/*https://github.com/borusyak/did_imputation/blob/main/five_estimators_example.do*/
// Generate a complete panel of 300 units observed in 15 periods
clear all
timer clear
set seed 10
global T = 15
global I = 100 /*300*/
global pre 5 /*6*/
global post 8
global ep event_plot
global g0 "default_look"
global g1 xla(-$pre (1) $post) /*global g1 xla(-5(1)5)*/
global g2 xt("Periods since the event")
global g3 yt("Average causal effect")
global g $g1 $g2 $g3
global t "together"
set obs `=$I*$T'
gen i = int((_n-1)/$T )+1 // unit id
gen t = mod((_n-1),$T )+1 // calendar period
tsset i t
// Randomly generate treatment rollout years uniformly across Ei=10..16 (note that periods t>=16 would not be useful since all units are treated by then)
gen Ei = 7 if t==1 & i>=1 & i <=35 // year when unit is first treated
replace Ei = 11 if t==1 & i>=36 & i <=70 // year when unit is first treated
bys i (t): replace Ei = Ei[1]
gen K = t-Ei // "relative time", i.e. the number periods since treated (could be missing if never-treated)
gen D = K>=0 & Ei!=. // treatment indicator
// Generate the outcome with parallel trends and heterogeneous treatment effects
gen tau = 0 // TE
replace tau = 20 if D==1 & i>=1 & i <=35
replace tau = 60 if D==1 & i>=36 & i <=70
gen eps = rnormal() // error term
// gen Y = i + 3*t + tau*D + 3*eps // the outcome (FEs play no role since all methods control for them)
gen Y = i/100 + tau*D + 3*eps
// save five_estimators_data, replace
gen gvar = cond(Ei==., 0, Ei) // csdid: replace Ei==. w/ Ei==0
// sum Ei
gen never_tr = Ei==. // never_tr =1 for never-treated cohort
/* Gen leads & lags of treatment */
forval x = 1/$pre { // drop the first lead
gen F_`x' = K == -`x'
replace F_`x' = 0 if never_tr==1
}
forval x = 0/$post {
gen L_`x' = K == `x'
replace L_`x' = 0 if never_tr==1
}
rename F_1 ref // reference year
/* Previous Leads/Lags, AZ: I think above is correct
cap drop F_* // leads
cap drop L_* //lags
forval x = 1/14 {
gen F_`x' = K == -`x'
}
forval x = 0/5 {
gen L_`x' = K == `x'
}
rename F_1 ref // reference year
*/
xtline Y, overlay legend(off) name(gY, replace)
/* BJS & CD don't want too many pre-periods*/
// Estimation with did_imputation of Borusyak et al. (2021)
did_imputation Y i t Ei, horizons(0/$post) pretrend($pre) minn(0) /**/
estimates store bjs // storing the estimates for later
$ep bjs, $t $g0 graph_opt($g ti("BJS 21") name(gBJS, replace))
// Estimation with did_multiplegt of de Chaisemartin and D'Haultfoeuille (2020)
did_multiplegt Y i t D, robust_dynamic dynamic($post) placebo($pre) breps(20) cluster(i)
event_plot e(estimates)#e(variances), stub_lag(Effect_#) stub_lead(Placebo_#) $t $g0 graph_opt($g ti("CD 20") name(gCD, replace))
matrix dcdh_b = e(estimates) // storing the estimates for later
matrix dcdh_v = e(variances)
// Estimation with csdid of Callaway and Sant'Anna (2020)
csdid Y, ivar(i) time(t) gvar(gvar) notyet
estat event, estore(cs) // this produces and stores the estimates at the same time
$ep cs, stub_lag(Tp#) stub_lead(Tm#) $t $g0 graph_opt($g ti("CS 20") name(gCS, replace))
// Estimation with eventstudyinteract of Sun and Abraham (2020)
eventstudyinteract Y L_* F_*, vce(cluster i) absorb(i t) cohort(Ei) control_cohort(never_tr)
$ep e(b_iw)#e(V_iw), stub_lag(L_#) stub_lead(F_#) $t $g0 graph_opt($g ti("SA 20") name(gSA, replace))
matrix sa_b = e(b_iw) // storing the estimates for later
matrix sa_v = e(V_iw)
// TWFE OLS estimation (which is correct here because of treatment effect homogeneity). Some groups could be binned.
reghdfe Y L_* F_*, a(i t) cluster(i) /* cluster(i t) cluster(t) */
estimates store ols // saving the estimates for later
$ep ols, stub_lag(L_#) stub_lead(F_#) $t $g0 graph_opt($g ti("OLS") name(gOLS, replace))
// More stuff
/* GB: bacondecomp */
bacondecomp Y D, ddetail legend(off) name(gGB, replace)
/* did2s (Gardner 2021) */
did2s Y, first_stage(i t) second_stage(F_* L_*) treatment(D) cluster(i)
$ep, stub_lag(L_#) stub_lead(F_#) $t $g0 graph_opt($g ti("Gardner 21") name(gG, replace))
matrix did2s_b = e(b)
matrix did2s_v = e(V)
/* stackedev (Cengiz, Dube, Lindner, Zipperer 2019) */
stackedev Y F_* L_* ref, cohort(Ei) time(t) never_treat(never_tr) unit_fe(i) clust_unit(i)
$ep, stub_lag(L_#) stub_lead(F_#) $t $g0 graph_opt($g ti("CDLZ 19") name(gCDLZ, replace))
matrix stackedev_b = e(b)
matrix stackedev_v = e(V)
/* gY gBJS gCD gCS gSA gOLS gGB gG gCDLZ */
graph combine gY gOLS gGB gBJS gCD gCS gSA gG gCDLZ, ycommon name(combined, replace)
// Construct the vector of true average treatment effects by the number of periods since treatment
matrix btrue = J(1,9,.)
matrix colnames btrue = tau0 tau1 tau2 tau3 tau4 tau5 tau6 tau7 tau8
qui forvalues h = 0/8 {
sum tau if K==`h'
matrix btrue[1,`h'+1]=r(mean)
}
// Combine all plots using the stored estimates
event_plot ///
btrue# bjs dcdh_b#dcdh_v cs sa_b#sa_v did2s_b#did2s_v stackedev_b#stackedev_v ols, ///
stub_lag( tau# tau# Effect_# Tp# L_# L_# L_# L_#) ///
stub_lead(pre# pre# Placebo_# Tm# F_# F_# F_# F_#) ///
plottype(scatter) ciplottype(rcap) ///
together perturb(-0.325(0.1)0.325) trimlead(5) noautolegend ///
graph_opt( ///
title("Event study estimators in a simulated panel", size(med)) ///
xtitle("Periods since the event", size(small)) ///
ytitle("Average causal effect", size(small)) xlabel(-$pre(1)$post) ///
legend(order(1 "Truth" 2 "BJS" 4 "dCdH" ///
6 "CS" 8 "SA" 10 "G" 12 "CDLZ" 14 "TWFE") rows(2) position(6) region(style(none))) ///
/// the following lines replace default_look with something more elaborate
xline(-0.5, lcolor(gs8) lpattern(dash)) yline(0, lcolor(gs8)) graphregion(color(white)) bgcolor(white) ylabel(, angle(horizontal)) ///
) ///
lag_opt1(msymbol(+) color(black)) lag_ci_opt1(color(black)) ///
lag_opt2(msymbol(O) color(cranberry)) lag_ci_opt2(color(cranberry)) ///
lag_opt3(msymbol(Dh) color(navy)) lag_ci_opt3(color(navy)) ///
lag_opt4(msymbol(Th) color(forest_green)) lag_ci_opt4(color(forest_green)) ///
lag_opt5(msymbol(Sh) color(dkorange)) lag_ci_opt5(color(dkorange)) ///
lag_opt6(msymbol(Th) color(blue)) lag_ci_opt6(color(blue)) ///
lag_opt7(msymbol(Dh) color(red)) lag_ci_opt7(color(red)) ///
lag_opt8(msymbol(Oh) color(purple)) lag_ci_opt8(color(purple))
event_plot btrue# bjs dcdh_b#dcdh_v cs sa_b#sa_v ols, ///
stub_lag( tau# tau# Effect_# Tp# L_# L_#) ///
stub_lead(pre# pre# Placebo_# Tm# F_# F_#) plottype(scatter) ciplottype(rcap) ///
noautolegend /// together perturb(-0.325(0.13)0.325) trimlead(5)
graph_opt(title("Event study estimators in a simulated panel (300 units, 15 periods)", size(medlarge)) ///
xtitle("Periods since the event") ytitle("Average causal effect") xlabel(-$pre(1)$post) /// ylabel(0(1)3)
legend(order(1 "True value" 2 "Borusyak et al." 4 "de Chaisemartin-D'Haultfoeuille" ///
6 "Callaway-Sant'Anna" 8 "Sun-Abraham" 10 "OLS") rows(3) region(style(none))) ///
/// the following lines replace default_look with something more elaborate
xline(-0.5, lcolor(gs8) lpattern(dash)) yline(0, lcolor(gs8)) graphregion(color(white)) bgcolor(white) ylabel(, angle(horizontal)) ///
) ///
lag_opt1(msymbol(+) color(cranberry)) lag_ci_opt1(color(cranberry)) ///
lag_opt2(msymbol(O) color(cranberry)) lag_ci_opt2(color(cranberry)) ///
lag_opt3(msymbol(Dh) color(navy)) lag_ci_opt3(color(navy)) ///
lag_opt4(msymbol(Th) color(forest_green)) lag_ci_opt4(color(forest_green)) ///
lag_opt5(msymbol(Sh) color(dkorange)) lag_ci_opt5(color(dkorange)) ///
lag_opt6(msymbol(Oh) color(purple)) lag_ci_opt6(color(purple))
graph export "five_estimators_example.png", replace