-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlsh_scipy.py
50 lines (39 loc) · 1.23 KB
/
lsh_scipy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from sklearn.neighbors import LSHForest
import csv
data=[]
import numpy as np
with open('DataDist.csv', 'rb') as csvfile:
spamreader = csv.reader(csvfile, delimiter='\t')
for row in spamreader:
for i in range(1,22):
row[i]=float(row[i])+float(1.0/21) #smoothing
data.append(row)
movie_name=[]
# removing movies name
for i in range(len(data)):
name=data[i].pop(0)
movie_name.append(name)
for i in range(len(data)):
for j in range(21):
data[i][j]=float(data[i][j])
testVar = raw_input("Ask user for movie name.")
for i in range(len(movie_name)):
name=movie_name[i]
if testVar.lower() in name.lower():
k=i
break
movie_data=data[k]
#X_train = [[5, 5, 2], [21, 5, 5], [1, 1, 1], [8, 9, 1], [6, 10, 2]]
#X_test = [[9, 1, 6], [3, 1, 10], [7, 10, 3]]
lshf = LSHForest(random_state=42)
lshf.fit(data)
LSHForest(min_hash_match=4, n_candidates=50, n_estimators=10,
n_neighbors=5, radius=1.0, radius_cutoff_ratio=0.9,
random_state=42)
distances, indices = lshf.kneighbors(movie_data, n_neighbors=5)
print(distances)
print(len(indices))
i=indices[0,1]
for i in range(len(indices)):
for j in range(0,len(indices[i])):
print(movie_name[indices[i,j]])