forked from attreyabhatt/Sentiment-Analysis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
63 lines (49 loc) · 2.44 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import string
from collections import Counter
import matplotlib.pyplot as plt
# reading text file
text = open("read.txt", encoding="utf-8").read()
# converting to lowercase
lower_case = text.lower()
# Removing punctuations
cleaned_text = lower_case.translate(str.maketrans('', '', string.punctuation))
# splitting text into words
tokenized_words = cleaned_text.split()
stop_words = ["i", "me", "my", "myself", "we", "our", "ours", "ourselves", "you", "your", "yours", "yourself",
"yourselves", "he", "him", "his", "himself", "she", "her", "hers", "herself", "it", "its", "itself",
"they", "them", "their", "theirs", "themselves", "what", "which", "who", "whom", "this", "that", "these",
"those", "am", "is", "are", "was", "were", "be", "been", "being", "have", "has", "had", "having", "do",
"does", "did", "doing", "a", "an", "the", "and", "but", "if", "or", "because", "as", "until", "while",
"of", "at", "by", "for", "with", "about", "against", "between", "into", "through", "during", "before",
"after", "above", "below", "to", "from", "up", "down", "in", "out", "on", "off", "over", "under", "again",
"further", "then", "once", "here", "there", "when", "where", "why", "how", "all", "any", "both", "each",
"few", "more", "most", "other", "some", "such", "no", "nor", "not", "only", "own", "same", "so", "than",
"too", "very", "s", "t", "can", "will", "just", "don", "should", "now"]
# Removing stop words from the tokenized words list
final_words = []
for word in tokenized_words:
if word not in stop_words:
final_words.append(word)
# NLP Emotion Algorithm
# 1) Check if the word in the final word list is also present in emotion.txt
# - open the emotion file
# - Loop through each line and clear it
# - Extract the word and emotion using split
# 2) If word is present -> Add the emotion to emotion_list
# 3) Finally count each emotion in the emotion list
emotion_list = []
with open('emotions.txt', 'r') as file:
for line in file:
clear_line = line.replace("\n", '').replace(",", '').replace("'", '').strip()
word, emotion = clear_line.split(':')
if word in final_words:
emotion_list.append(emotion)
print(emotion_list)
w = Counter(emotion_list)
print(w)
# Plotting the emotions on the graph
fig, ax1 = plt.subplots()
ax1.bar(w.keys(), w.values())
fig.autofmt_xdate()
plt.savefig('graph.png')
plt.show()