-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlearn.py
51 lines (50 loc) · 1.58 KB
/
learn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import random
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
empty = []
cols = ["10", "50", "100", "500", "1000", "5000", "10000"]
arr = [10, 50, 100, 500, 1000, 5000, 10000]
arr = [int(x) for x in cols]
for i in range(len(arr)):
pin = 0
ptot = 0
sample = []
for j in range(arr[i]):
x = random.uniform(-1, 1)
y = random.uniform(-1, 1)
z = random.uniform(-1, 1)
if (x * x + y * y + z * z) <= 1:
pin += 1
ptot += 1
pi = 4 * (pin / ptot)
sample.append(pi)
empty.append(sample)
column = ["min", "max", "mean", "stand-dev", "variance", "skewness", "kurtosis"]
stats_data = pd.DataFrame(data=np.zeros((7, 7)), columns=column, index=arr)
min, max, mean, stdev, var, skew, kurt = [], [], [], [], [], [], []
for i in range(len(arr)):
raw = pd.DataFrame(
data=empty[i], columns={cols[i]}, index=np.arange(1, len(empty[i]) + 1)
)
min.append(raw[str(cols[i])].min())
max.append(raw[str(cols[i])].max())
mean.append(raw[str(cols[i])].mean())
stdev.append(raw[str(cols[i])].std())
var.append(raw[str(cols[i])].var())
skew.append(raw[str(cols[i])].skew())
kurt.append(raw[str(cols[i])].kurtosis())
sns.displot(data=raw, x=str(cols[i]), kind="kde")
raw.to_csv(str(cols[i]) + ".csv")
del raw
stats_data["min"] = min
stats_data["max"] = max
stats_data["mean"] = mean
stats_data["stand-dev"] = stdev
stats_data["variance"] = var
stats_data["skewness"] = skew
stats_data["kurtosis"] = kurt
print(stats_data)
stats_data.to_csv("stats.csv")
plt.show()