-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathfuzzy.m
274 lines (203 loc) · 7.77 KB
/
fuzzy.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
clear;clc;
%% init
yhat = [];
TrainingErrors = [];
%% load text data
T = readtable('GSPC-snp500.csv');
close_data = T{end-1050:end,5};
x = close_data';
%% the main for loop: iterate through dates
% 2 months test
TEST_DAY = 7; %42
for day = TEST_DAY:-1:1
x = close_data(end-day-999:end-day+1)';
%% prepare data
% model 1, weekly data
Delays = [5 10 15 20 25];
[InputsW, TargetsW] = CreateTimeSeriesData(x, Delays);
%% model2: daily data
Delays = [1 2 3 4 5];
[InputsD, TargetsD] = CreateTimeSeriesData(x, Delays);
%% split train & test
[XTrainW, XTestW, YTrainW, YTestW] = CreateTimedTrainTestData(InputsW', TargetsW');
[XTrainD, XTestD, YTrainD, YTestD] = CreateTimedTrainTestData(InputsD', TargetsD');
%% FIS Generation
% 1: 'Grid Partitioning (genfis1)';
opt = genfisOptions('GridPartition');
opt.NumMembershipFunctions=5;
opt.InputMembershipFunctionType="gaussmf";
InputMF='gaussmf';
OutputMF='linear';
%fis1=genfis1([TrainInputs TrainTargets],NumMembershipFunctions,InputMF,OutputMF);
fis1D = genfis(XTrainD, YTrainD, opt);
fis1W = genfis(XTrainW, YTrainW, opt);
%showrule(fis1)
%% tune fis 1
[in,out,rule] = getTunableSettings(fis1D);
opt1 = tunefisOptions("Method","anfis");
fisout1D = tunefis(fis1D,[in;out],XTrainD,YTrainD,opt1);
[in,out,rule] = getTunableSettings(fis1W);
opt1 = tunefisOptions("Method","anfis");
fisout1W = tunefis(fis1W,[in;out],XTrainW,YTrainW,opt1);
%%
% 2: 'Subtractive Clustering (genfis2)';
Radius=0.55;
%fis2=genfis2(TrainInputs,TrainTargets,Radius);
opt = genfisOptions('SubtractiveClustering',...
'ClusterInfluenceRange',Radius);
fis2D = genfis(XTrainD, YTrainD, opt);
fis2W = genfis(XTrainW, YTrainW, opt);
%showrule(fis2)
%% tune fis 2
[in,out,rule2] = getTunableSettings(fis2D);
opt2 = tunefisOptions("Method","anfis");
fisout2D = tunefis(fis2D,[in;out],XTrainD,YTrainD,opt2);
[in,out,rule2] = getTunableSettings(fis2W);
opt2 = tunefisOptions("Method","anfis");
fisout2W = tunefis(fis2W,[in;out],XTrainW,YTrainW,opt2);
%%
% 3: 'FCM (genfis3)';
nCluster=5;
Exponent=2;
MaxIt=100;
MinImprovment=1e-5;
DisplayInfo=1;
FCMOptions=[Exponent MaxIt MinImprovment DisplayInfo];
opt = genfisOptions('FCMClustering','FISType','sugeno');
opt.NumClusters = 5;
% fis3=genfis3(TrainInputs,TrainTargets,'sugeno',nCluster,FCMOptions);
fis3D = genfis(XTrainD, YTrainD, opt);
fis3W = genfis(XTrainW, YTrainW, opt);
% showrule(fis3)
%% tune fis 3
[in,out,rule3] = getTunableSettings(fis3D);
opt3 = tunefisOptions("Method","anfis");
fisout3D = tunefis(fis3D,[in;out],XTrainD,YTrainD,opt3);
[in,out,rule3] = getTunableSettings(fis3W);
opt3 = tunefisOptions("Method","anfis");
fisout3W = tunefis(fis3W,[in;out],XTrainW,YTrainW,opt3);
%% Train ANFIS
MaxEpoch=50;
ErrorGoal=0;
InitialStepSize=0.01;
StepSizeDecreaseRate=0.9;
StepSizeIncreaseRate=1.1;
TrainOptions=[MaxEpoch ...
ErrorGoal ...
InitialStepSize ...
StepSizeDecreaseRate ...
StepSizeIncreaseRate];
DisplayInfo=true;
DisplayError=true;
DisplayStepSize=true;
DisplayFinalResult=true;
DisplayOptions=[DisplayInfo ...
DisplayError ...
DisplayStepSize ...
DisplayFinalResult];
OptimizationMethod=1;
% 0: Backpropagation
% 1: Hybrid
%% optmethod = 1
%no tuning
anfis1d=anfis([XTrainD YTrainD],fis1D,TrainOptions,DisplayOptions,[],OptimizationMethod);
anfis2d=anfis([XTrainD YTrainD],fis2D,TrainOptions,DisplayOptions,[],OptimizationMethod);
anfis3d=anfis([XTrainD YTrainD],fis3D,TrainOptions,DisplayOptions,[],OptimizationMethod);
anfis1w=anfis([XTrainW YTrainW],fis1W,TrainOptions,DisplayOptions,[],OptimizationMethod);
anfis2w=anfis([XTrainW YTrainW],fis2W,TrainOptions,DisplayOptions,[],OptimizationMethod);
anfis3w=anfis([XTrainW YTrainW],fis3W,TrainOptions,DisplayOptions,[],OptimizationMethod);
%tuned
anfis1dt=anfis([XTrainD YTrainD],fisout1D,TrainOptions,DisplayOptions,[],OptimizationMethod);
anfis2dt=anfis([XTrainD YTrainD],fisout2D,TrainOptions,DisplayOptions,[],OptimizationMethod);
anfis3dt=anfis([XTrainD YTrainD],fisout3D,TrainOptions,DisplayOptions,[],OptimizationMethod);
anfis1wt=anfis([XTrainW YTrainW],fisout1W,TrainOptions,DisplayOptions,[],OptimizationMethod);
anfis2wt=anfis([XTrainW YTrainW],fisout2W,TrainOptions,DisplayOptions,[],OptimizationMethod);
anfis3wt=anfis([XTrainW YTrainW],fisout3W,TrainOptions,DisplayOptions,[],OptimizationMethod);
%% Apply ANFIS to Data
% daily models
OutputsD = zeros(6,size(InputsD,2));
OutputsD(1,:)=evalfis(InputsD,anfis1d);
OutputsD(2,:)=evalfis(InputsD,anfis2d);
OutputsD(3,:)=evalfis(InputsD,anfis3d);
OutputsD(4,:)=evalfis(InputsD,anfis1dt);
OutputsD(5,:)=evalfis(InputsD,anfis2dt);
OutputsD(6,:)=evalfis(InputsD,anfis3dt);
TrainOutputsD=OutputsD(:, 1:end-1);
TestOutputsD=OutputsD(:, end);
% weekly models
OutputsW = zeros(6,size(InputsW,2));
OutputsW(1,:)=evalfis(InputsW,anfis1w);
OutputsW(2,:)=evalfis(InputsW,anfis2w);
OutputsW(3,:)=evalfis(InputsW,anfis3w);
OutputsW(4,:)=evalfis(InputsW,anfis1wt);
OutputsW(5,:)=evalfis(InputsW,anfis2wt);
OutputsW(6,:)=evalfis(InputsW,anfis3wt);
TrainOutputsW=OutputsW(:, 1:end-1);
TestOutputsW=OutputsW(:, end);
%% generate ensamble output
nmin = min(size(TrainOutputsD,2),size(TrainOutputsW,2));
TrainOutputsD = TrainOutputsD(4:6,end-nmin+1:end);
TrainOutputsW = TrainOutputsW(4:6,end-nmin+1:end);
TrainOutputs = [TrainOutputsD; TrainOutputsW];
TestOutputs = [TestOutputsD; TestOutputsW];
yhat = [yhat; TestOutputs' mean(TestOutputs)];
TrainOutputs = mean(TrainOutputs)';
TestOutputs = mean(TestOutputs)';
%% Error Calculation
nmin = min(size(YTrainD,1),size(YTrainW,1));
TrainTargets = YTrainD(end-nmin+1:end,1);
TestTargets = YTestD;
TrainErrors=TrainTargets-TrainOutputs;
TrainMSE=mean(TrainErrors.^2);
TrainRMSE=sqrt(TrainMSE);
TrainErrorMean=mean(TrainErrors);
TrainErrorSTD=std(TrainErrors);
TestErrors=TestTargets-TestOutputs;
TestMSE=mean(TestErrors.^2);
TestRMSE=sqrt(TestMSE);
TestErrorMean=mean(TestErrors);
TestErrorSTD=std(TestErrors);
TrainingErrors = [TrainingErrors; TrainMSE TrainRMSE TrainErrorMean TrainErrorSTD];
end
%% Plot Results
figure;
PlotResults(TrainTargets,TrainOutputs,'Train Data');
figure;
dailyens = yhat(:,3);
PlotResults(x(end-41:end)',dailyens,'Test Data');
figure;
PlotResults(TargetsD,Outputs,'All Data');
if ~isempty(which('plotregression'))
figure;
plotregression(TrainTargets, TrainOutputs, 'Train Data', ...
TestTargets, TestOutputs, 'Test Data', ...
TargetsD, Outputs, 'All Data');
set(gcf,'Toolbar','figure');
end
%% plot more results
x = 1:42;
% training errors
plot(x', TrainingErrors(:,1));
plot(x', TrainingErrors(:,2));
% test errors
figure
plot(x', dailyend);
title('Test Errors')
xlabel('days')
ylabel('predicted')
legend('1d','2d','3d','1dt','2dt','3dt', '1w', '2w', '3w', '1wt', '2wt', '3wt', 'ens');
avg = mean(yhat);
%% averages
yhat(:,14)=dailyens;
TestTargets = x(end-41:end)';
testerr=[];
for i=1:14
TestErrors=TestTargets-yhat(:,i);
TestMSE=mean(TestErrors.^2);
TestRMSE=sqrt(TestMSE);
TestErrorMean=mean(TestErrors);
TestErrorSTD=std(TestErrors);
Rsq = 1 - sum( ( TestTargets-yhat(:,i) ).^2) / sum((TestTargets - mean(TestTargets)).^2);
disp(i);
testerr = [testerr; Rsq TestMSE TestRMSE TestErrorMean TestErrorSTD ];
end