-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmodel.py
108 lines (80 loc) · 3.23 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import numpy as np
from scipy.special import softmax
qk_results = []
def gelu(x):
return 0.5 * x * (1. + np.tanh(x * 0.7978845608028654 * (1. + 0.044715 * x * x)))
def fwd_embedding(params, x):
# params
embedding: np.ndarray = params['embedding'] # array
y = embedding[x]
return y
def fwd_layer_norm(params, x, eps: float=1e-12):
# params
scale: np.ndarray = params['scale'] # array
bias: np.ndarray = params['bias'] # array
mean = x.mean(-1, keepdims=True)
var = x.var(-1, keepdims=True)
y = ((x - mean) / np.sqrt(var + eps)) * scale + bias
return y
def fwd_linear(params, x):
# params
kernel: np.ndarray = params['kernel'] # array
bias: np.ndarray = params['bias'] # array
y = np.dot(x, kernel) + bias
return y
def fwd_attention(params, src, dst):
# params
q_proj = params['q_proj']
k_proj = params['k_proj']
v_proj = params['v_proj']
ff = params['ff']
_, _, d_k = q_proj['kernel'].shape
q = np.einsum('bdm,mhk->bdhk', dst, q_proj['kernel']) # bs, dst_len, n_heads, d_k
k = np.einsum('bsm,mhk->bshk', src, k_proj['kernel']) # bs, src_len, n_heads, d_k
v = np.einsum('bsm,mhv->bshv', src, v_proj['kernel']) # bs, src_len, n_heads, d_v
if 'bias' in q_proj:
q += q_proj['bias'] # bs, dst_len, n_heads, d_k
k += k_proj['bias'] # bs, src_len, n_heads, d_k
v += v_proj['bias'] # bs, src_len, n_heads, d_v
qk = np.einsum('bdhk,bshk->bhds', q, k) # bs, n_heads, dst_len, src_len
qk = qk / np.sqrt(d_k)
qk = softmax(qk, axis=-1)
qk_results.append(qk)
qkv = np.einsum('bhds,bshv->bdhv', qk, v) # bs, dst_len, n_heads, d_v
output = np.einsum('bdhv,hvm->bdm', qkv, ff['kernel']) # bs, dst_len, d_ff
if 'bias' in ff:
output += ff['bias'] # bs, dst_len, d_ff
return output
def fwd_transformer_encoder(params, src):
# params
self_attn: dict = params['self_attn'] # attention
self_attn_layer_norm: dict = params['self_attn_layer_norm'] # layer norm
ff0: dict = params['ff0'] # linear
ff1: dict = params['ff1'] # linear
final_layer_norm: dict = params['final_layer_norm'] # layer norm
src_ = src
t = fwd_attention(self_attn, src, src)
t = t + src_
t = fwd_layer_norm(self_attn_layer_norm, t)
t_ = t
t = fwd_linear(ff0, t)
t = gelu(t)
t = fwd_linear(ff1, t)
t = t + t_
t = fwd_layer_norm(final_layer_norm, t)
return t
def fwd_transformer(params, src):
# params
embedding: dict = params['embedding'] # embedding
encoder_token_type_embedding: np.ndarray = params['encoder_token_type_embedding'] # array
encoder_embed_positions: np.ndarray = params['encoder_embed_positions'] # array
encoder_embed_layer_norm: dict = params['encoder_embed_layer_norm'] # layer norm
encoder_layers: list = params['encoder_layers'] # list of transformer encoder
_, width_enc = src.shape
src = fwd_embedding(embedding, src)
src = src + encoder_token_type_embedding[0] # `token_type_id` is always 0
src = src + encoder_embed_positions[:width_enc]
src = fwd_layer_norm(encoder_embed_layer_norm, src)
for encoder_layer in encoder_layers:
src = fwd_transformer_encoder(encoder_layer, src)
return src