-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathsift-align-inlier-ratio-matrix.bsh
169 lines (148 loc) · 4.11 KB
/
sift-align-inlier-ratio-matrix.bsh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import ij.IJ;
import ij.ImagePlus;
import ij.ImageStack;
import ij.process.FloatProcessor;
import java.lang.Thread;
import java.lang.Runnable;
import java.util.ArrayList;
import java.util.concurrent.atomic.AtomicInteger;
import mpicbg.ij.FeatureTransform;
import mpicbg.ij.SIFT;
import mpicbg.imagefeatures.Feature;
import mpicbg.imagefeatures.FloatArray2DSIFT;
import mpicbg.models.AffineModel2D;
import mpicbg.models.NoninvertibleModelException;
import mpicbg.models.NotEnoughDataPointsException;
import mpicbg.models.RigidModel2D;
import mpicbg.models.SimilarityModel2D;
import mpicbg.models.TranslationModel2D;
/* custom parameters */
range = 47;
FloatArray2DSIFT.Param p = new FloatArray2DSIFT.Param();
//p.fdSize = 4;
//p.maxOctaveSize = 700;
//p.minOctaveSize = 300;
//maxSteps = 3;
//float rod = 0.92f;
//float maxEpsilon = 20f;
//float minInlierRatio = 0.05f;
//int minNumInliers = 10;
//p.fdSize = 4;
//p.maxOctaveSize = 4000;
//p.minOctaveSize = 1500;
//maxSteps = 3;
//float rod = 0.92f;
//float maxEpsilon = 50f;
//float minInlierRatio = 0.0f;
//int minNumInliers = 20;
p.initialSigma = 1.6f;
p.fdSize = 4;
p.maxOctaveSize = 1200;
p.minOctaveSize = 64;
p.steps = 5;
float rod = 0.92f;
float maxEpsilon = 20f;
float minInlierRatio = 0.0f;
int minNumInliers = 10;
/* transformation models */
//AffineModel2D affine = new AffineModel2D();
SimilarityModel2D affine = new SimilarityModel2D();
TranslationModel2D translation = new TranslationModel2D();
/* extract features */
ArrayList extract(ijSIFT, ip) {
ArrayList features = new ArrayList();
ijSIFT.extractFeatures(ip, features);
return features;
}
/* match */
double match(model, features1, features2) {
ArrayList candidates = new ArrayList();
ArrayList inliers = new ArrayList();
double inlierRatio = 0.0;
if (features1.size() > 0 && features2.size() > 0) {
FeatureTransform.matchFeatures(features1, features2, candidates, rod);
boolean modelFound = false;
try {
modelFound = model.filterRansac(
candidates,
inliers,
1000,
maxEpsilon,
minInlierRatio,
minNumInliers,
3);
}
catch (NotEnoughDataPointsException e) {
modelFound = false;
}
if (modelFound)
inlierRatio = (double)inliers.size() / candidates.size();
}
return inlierRatio;
}
/* main */
/* images */
imp = IJ.getImage();
final ImageStack stack = imp.getStack();
final int n = stack.getSize();
/* extract features */
ArrayList[] featuresList = new ArrayList[n];
final AtomicInteger i = new AtomicInteger(0);
ArrayList threads = new ArrayList();
for (int t = 0; t < Runtime.getRuntime().availableProcessors(); ++t) {
Thread thread = new Thread(
new Runnable(){
public void run(){
FloatArray2DSIFT sift = new FloatArray2DSIFT(p);
SIFT ijSIFT = new SIFT(sift);
for (int k = i.getAndIncrement(); k < n; k = i.getAndIncrement()) {
ArrayList features = extract(ijSIFT, stack.getProcessor(k + 1));
IJ.log( k + ": " + features.size() + " features extracted" );
featuresList[k] = features;
}
}
}
);
threads.add(thread);
thread.start();
}
for (Thread t : threads)
t.join();
/* initialize matrix */
final FloatProcessor matrix = new FloatProcessor(n, n);
matrix.add(Double.NaN);
for (int i = 0; i < n; ++i) {
if (featuresList[i].size() > 0)
matrix.setf(i, i, 1.0f);
else
matrix.setf(i, i, 0.0f);
}
matrix.setMinAndMax(0, 1);
final ImagePlus impMatrix = new ImagePlus("inlier ratio matrix", matrix);
impMatrix.show();
/* match */
for (int i = 0; i < n; ++i) {
final int fi = i;
final ArrayList f1 = featuresList[fi];
final AtomicInteger j = new AtomicInteger(fi + 1);
for (int t = 0; t < Runtime.getRuntime().availableProcessors(); ++t) {
Thread thread = new Thread(
new Runnable(){
public void run(){
for (int k = j.getAndIncrement(); k < n && k < fi + range; k = j.getAndIncrement()) {
ArrayList f2 = featuresList[k];
float inlierRatio = (float)match(affine, f1, f2);
matrix.setf(fi, k, inlierRatio);
matrix.setf(k, fi, inlierRatio);
impMatrix.updateAndDraw();
}
}
}
);
threads.add(thread);
thread.start();
}
for (Thread t : threads)
t.join();
}