-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
159 lines (125 loc) · 4.93 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import os
import numpy as np
import torch
import torchvision
import argparse
from dataloader_suc import *
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.nn.parallel import DataParallel
from torch.nn.parallel import DistributedDataParallel as DDP
# SimCLR
from simclr import SimCLR
from simclr.modules import NT_Xent, get_resnet
from simclr.modules.transformations import TransformsSimCLR_suc
from simclr.modules.sync_batchnorm import convert_model
from model import load_optimizer, save_model
from utils import yaml_config_hook
os.environ['CUDA_VISIBLE_DEVICES']='1'
import setproctitle
setproctitle.setproctitle('checkpoint_POI@')
def train(args, train_loader, model,criterion, optimizer):#, writer):
loss_epoch = 0
for step, (x_i, x_j) in enumerate(train_loader):
optimizer.zero_grad()
x_i = x_i.cuda(non_blocking=True)
x_j = x_j.cuda(non_blocking=True)
# positive pair, with encoding
h_i, h_j, z_i, z_j = model(x_i, x_j)
loss = criterion(z_i, z_j)
loss.backward()
optimizer.step()
if dist.is_available() and dist.is_initialized():
loss = loss.data.clone()
dist.all_reduce(loss.div_(dist.get_world_size()))
if args.nr == 0 and step % 50 == 0:
print(f"Step [{step}/{len(train_loader)}]\t Loss: {loss.item()}")
if args.nr == 0:
args.global_step += 1
loss_epoch += loss.item()
return loss_epoch
def main(gpu, args):
rank = args.nr * args.gpus + gpu
if args.nodes > 1:
dist.init_process_group("nccl", rank=rank, world_size=args.world_size)
torch.cuda.set_device(gpu)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
train_dataset = MyDataset(
'image_name_POI_duiqi.csv', # satellite image list
'corr_file/corr_POI_image.txt', # corresponding number (ID) of the POI/geo-most adjacent satellit image in the list above
'./dataset/BJ_zl15_new_unified/', #dir of satellite image
transform=TransformsSimCLR_suc(size=args.image_size),
)
if args.nodes > 1:
train_sampler = torch.utils.data.distributed.DistributedSampler(
train_dataset, num_replicas=args.world_size, rank=rank, shuffle=True
)
else:
train_sampler = None
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.batch_size,
shuffle=True,
drop_last=True,
num_workers=args.workers,
sampler=train_sampler,
)
print('train_dataset',len(train_dataset))
# initialize ResNet
encoder = get_resnet(args.resnet, pretrained=False)
n_features = encoder.fc.in_features # get dimensions of fc layer
# initialize model
model = SimCLR(encoder, args.projection_dim, n_features)
if 1:#args.reload:
model_fp = "checkpoint_100.tar"
model.load_state_dict(torch.load(model_fp, map_location=args.device.type))
model = model.to(args.device)
# optimizer / loss
optimizer, scheduler = load_optimizer(args, model)
criterion = NT_Xent_suc(args.batch_size, args.temperature, args.world_size)
# DDP / DP
if args.dataparallel:
model = convert_model(model)
model = DataParallel(model)
else:
if args.nodes > 1:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
model = DDP(model, device_ids=[gpu])
model = model.to(args.device)
args.global_step = 0
args.current_epoch = 0
for epoch in range(args.start_epoch, args.epochs):
if train_sampler is not None:
train_sampler.set_epoch(epoch)
lr = optimizer.param_groups[0]["lr"]
loss_epoch = train(args, train_loader, model,criterion, optimizer)#, writer)
if args.nr == 0 and scheduler:
scheduler.step()
if args.nr == 0 and epoch % 10 == 0:
save_model(args, model, optimizer)
if args.nr == 0:
print(
f"Epoch [{epoch}/{args.epochs}]\t Loss: {loss_epoch / len(train_loader)}\t lr: {round(lr, 5)}"
)
args.current_epoch += 1
## end training
save_model(args, model, optimizer)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="SimCLR")
config = yaml_config_hook("./config/config_suc.yaml")
for k, v in config.items():
parser.add_argument(f"--{k}", default=v, type=type(v))
args = parser.parse_args()
if not os.path.exists(args.model_path):
os.makedirs(args.model_path)
args.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
args.num_gpus = torch.cuda.device_count()
args.world_size = args.gpus * args.nodes
if args.nodes > 1:
print(
f"Training with {args.nodes} nodes, waiting until all nodes join before starting training"
)
mp.spawn(main, args=(args,), nprocs=args.gpus, join=True)
else:
main(0, args)