-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_fifa19.py
102 lines (92 loc) · 4 KB
/
train_fifa19.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Jun 5 18:51:14 2019
@author: aviallon
"""
import numpy as np
import matplotlib.pyplot as plt
import evolvenn as enn
from evolvenn import Dense, relu, hard_sigmoid, Sequential, LeakyReLU,\
Adam, NoOptimizer, linear, hard_tanh, sigmoid
import pandas
data = pandas.read_csv('datasets/fifa19.csv')
data.dropna()
column_names = {'Name':'nom',
'Age':'age',
'Club':'club',
'Overall':'score',
'Potential':'potential',
'Value':'price',
'Wage':'wage',
'Special':'special',
'Skill Moves':'skill',
'Acceleration':'accel',
'SprintSpeed':'speed',
'Crossing':'crossing',
'Agility':'agility',
'Reactions':'reactions',
'Balance':'balance',
'LongShots':'longshots',
'Strength':'strength',
'ShotPower':'power',
'Jumping':'jump',
'Stamina':'stamina',
'Aggression':'agress',
'International Reputation':'fame',
'Work Rate':'work_rate',
'Body Type':'body',
'Height':'height',
'Weight':'weight',
'Finishing':'finish',
'FKAccuracy':'fk_acc',
'HeadingAccuracy':'head_acc',
'ShortPassing':'short_pass',
'Volleys':'volleys',
'Dribbling':'dribbling',
'Curve':'curve',
'Vision':'vision',
'Penalties':'penalties',
'Composure':'composure',
'Marking':'marking',
'Interceptions':'intercept',
'Positioning':'pos',
'StandingTackle':'gk_standing_tackle',
'SlidingTackle':'gk_slide_tackle',
'GKDiving':'gk_diving',
'GKHandling':'gk_handling',
'GKKicking':'gk_kick',
'GKPositioning':'gk_pos',
'GKReflexes':'reflexes',
'Release Clause':'release_clause'}
data = data.rename(columns=column_names)
data['release_clause'].replace(to_replace='[^0-9]+', value='',inplace=True,regex=True)
data['price'].replace(to_replace='[^0-9]+', value='',inplace=True,regex=True)
data['weight'].replace(to_replace='[^0-9]+', value='',inplace=True,regex=True)
data['wage'].replace(to_replace='[^0-9]+', value='',inplace=True,regex=True)
data['release_clause'] = data['release_clause'].astype(float)
data['price'] = data['price'].astype(float)
data['weight'] = data['weight'].astype(float)
data['wage'] = data['wage'].astype(float)
data = data.replace({"work_rate":{"High/ High":5, "High/ Medium":4, "Medium/ High":3, "Medium/ Medium":2, "Medium/ Low":1, "Low/ Medium":0, "Low/ Low":-1}})
data = data.replace({'body':{'Lean':0, 'Normal':1, 'Stocky':2, 'Messi':1, 'Neymar':2}})
is_numeric = data.applymap(lambda x: isinstance(x, (int, float))).all(0)
to_examine = list(filter(lambda key:is_numeric.to_dict()[key] == False, is_numeric.to_dict().keys()))
ok = list(filter(lambda key:is_numeric.to_dict()[key] == True and key != 'score' and key != 'potential' and all(c.islower() for c in key), is_numeric.to_dict().keys()))
data = data.sample(frac=1).reset_index(drop=True)
data.dropna(subset=ok, how='any', axis=0, inplace=True)
X = data[ok]
Y = data[['score']]
X = (X - X.mean()) / (X.max() - X.min())
Y = (Y - Y.mean()) / (Y.max() - Y.min())
try:
del(model)
except Exception:
pass
model = Sequential(input_size=len(ok), output_size=1, layers=[
#Dense(80, activation=LeakyReLU(), dropout=0.5),
Dense(40, activation=LeakyReLU(), dropout=0.5),
Dense(16, activation=LeakyReLU(), dropout=0.25),
Dense(1, activation=linear())
])
model.train(X.get_values()[:3000], Y.get_values()[:3000], batch_size=10, optimizer=Adam(epsilon=0.00001, lr=0.0001), epochs=300, patience=15, lr_decay=1e-3)