-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
187 lines (165 loc) · 6.25 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
def initialize_weights(m):
if isinstance(m, nn.Conv1d):
n = m.kernel_size[0] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2 / n))
if m.bias is not None:
nn.init.constant_(m.bias.data, 0)
elif isinstance(m, nn.BatchNorm1d):
nn.init.constant_(m.weight.data, 1)
nn.init.constant_(m.bias.data, 0)
elif isinstance(m, nn.Linear):
m.weight.data.normal_(0, 0.001)
if m.bias is not None:
nn.init.constant_(m.bias.data, 0)
class SELayer(nn.Module):
def __init__(self, inp, reduction=4):
super(SELayer, self).__init__()
self.fc = nn.Sequential(
nn.Linear(inp, int(inp // reduction)),
nn.SiLU(),
nn.Linear(int(inp // reduction), inp),
nn.Sigmoid()
)
def forward(self, x):
b, c, _, = x.size()
y = x.view(b, c, -1).mean(dim=2)
y = self.fc(y).view(b, c, 1)
return x * y
class EffBlock(nn.Module):
def __init__(self, in_ch, ks, resize_factor, activation, out_ch=None, se_reduction=None):
super().__init__()
self.in_ch = in_ch
self.out_ch = self.in_ch if out_ch is None else out_ch
self.resize_factor = resize_factor
self.se_reduction = resize_factor if se_reduction is None else se_reduction
self.ks = ks
self.inner_dim = self.in_ch * self.resize_factor
block = nn.Sequential(
nn.Conv1d(
in_channels=self.in_ch,
out_channels=self.inner_dim,
kernel_size=1,
padding='same',
bias=False
),
nn.BatchNorm1d(self.inner_dim),
activation(),
nn.Conv1d(
in_channels=self.inner_dim,
out_channels=self.inner_dim,
kernel_size=ks,
groups=self.inner_dim,
padding='same',
bias=False
),
nn.BatchNorm1d(self.inner_dim),
activation(),
SELayer(self.inner_dim, reduction=self.se_reduction),
nn.Conv1d(
in_channels=self.inner_dim,
out_channels=self.in_ch,
kernel_size=1,
padding='same',
bias=False
),
nn.BatchNorm1d(self.in_ch),
activation(),
)
self.block = block
def forward(self, x):
return self.block(x)
class LocalBlock(nn.Module):
def __init__(self, in_ch, ks, activation, out_ch=None):
super().__init__()
self.in_ch = in_ch
self.out_ch = self.in_ch if out_ch is None else out_ch
self.ks = ks
self.block = nn.Sequential(
nn.Conv1d(
in_channels=self.in_ch,
out_channels=self.out_ch,
kernel_size=self.ks,
padding='same',
bias=False
),
nn.BatchNorm1d(self.out_ch),
activation()
)
def forward(self, x):
return self.block(x)
class ResidualConcat(nn.Module):
def __init__(self, fn):
super().__init__()
self.fn = fn
def forward(self, x, **kwargs):
return torch.concat([self.fn(x, **kwargs), x], dim=1)
class MapperBlock(nn.Module):
def __init__(self, in_features, out_features, activation=nn.SiLU):
super().__init__()
self.block = nn.Sequential(
nn.BatchNorm1d(in_features),
nn.Conv1d(in_channels=in_features,
out_channels=out_features,
kernel_size=1),
)
def forward(self, x):
return self.block(x)
class LegNet(nn.Module):
def __init__(self,
in_ch,
stem_ch,
stem_ks,
ef_ks,
ef_block_sizes,
pool_sizes,
resize_factor,
activation=nn.SiLU,
):
super().__init__()
assert len(pool_sizes) == len(ef_block_sizes)
self.in_ch = in_ch
self.stem = LocalBlock(in_ch=in_ch,
out_ch=stem_ch,
ks=stem_ks,
activation=activation)
blocks = []
in_ch = stem_ch
out_ch = stem_ch
for pool_sz, out_ch in zip(pool_sizes, ef_block_sizes):
blc = nn.Sequential(
ResidualConcat(
EffBlock(
in_ch=in_ch,
out_ch=in_ch,
ks=ef_ks,
resize_factor=resize_factor,
activation=activation)
),
LocalBlock(in_ch=in_ch * 2,
out_ch=out_ch,
ks=ef_ks,
activation=activation),
nn.MaxPool1d(pool_sz) if pool_sz != 1 else nn.Identity()
)
in_ch = out_ch
blocks.append(blc)
self.main = nn.Sequential(*blocks)
self.mapper = MapperBlock(in_features=out_ch,
out_features=out_ch * 2)
self.head = nn.Sequential(nn.Linear(out_ch * 2, out_ch * 2),
nn.BatchNorm1d(out_ch * 2),
activation(),
nn.Linear(out_ch * 2, 1))
def forward(self, x):
x = self.stem(x)
x = self.main(x)
x = self.mapper(x)
x = F.adaptive_avg_pool1d(x, 1)
x = x.squeeze(-1)
x = self.head(x)
x = x.squeeze(-1)
return x