-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSV_goat.py
1594 lines (1249 loc) · 66.3 KB
/
SV_goat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
"""
Created on Tue Nov 21 16:37:47 2023
@author: h
"""
import numpy as np
import pandas as pd
import re
capra = pd.read_csv(r'F:\svdata\capra_sample281_flt_nohead.vcf',sep='\t')
#capra = pd.read_csv(r'F:\svdata\capra-442-have-sv-change.vcf',sep='\t',header=2208)
sheep = pd.read_csv(r'F:\download\jump_max\sheep-532-have-sv.vcf',sep='\t', header=62)
############************
sheep = pd.read_csv(r'F:\svdata\sheep_532_0516.vcf',sep='\t')
capra = pd.read_csv(r'F:\svdata\capra_281_0516.vcf',sep='\t')
location = pd.read_csv(r'F:\svdata\location.txt',sep=' ',header=None)
'''
indices = capra.loc[capra['INFO'].str.contains('=DEL'), :].index
# 然后,使用这些索引来对原始DataFrame进行赋值
capra.loc[indices, 'type'] = 'DEL'
indices = capra.loc[capra['INFO'].str.contains('=DUP'), :].index
# 然后,使用这些索引来对原始DataFrame进行赋值
capra.loc[indices, 'type'] = 'DUP'
indices = capra.loc[capra['INFO'].str.contains('=INV'), :].index
# 然后,使用这些索引来对原始DataFrame进行赋值
capra.loc[indices, 'type'] = 'INV'
indices = capra.loc[capra['INFO'].str.contains('=TRA'), :].index
# 然后,使用这些索引来对原始DataFrame进行赋值
capra.loc[indices, 'type'] = 'TRA'
indices = capra.loc[capra['INFO'].str.contains('=INS'), :].index
# 然后,使用这些索引来对原始DataFrame进行赋值
capra.loc[indices, 'type'] = 'INS'
'''
'''
INFO = capra[capra['INFO'].str.contains('=TRA')][['#CHROM','POS','INFO']]
#提取TRA信息
# Create a DataFrame
df = INFO
# Function to extract data between given start and end markers
def extract_data(s, start, end):
pattern = re.compile(r'{}(.*?){}'.format(re.escape(start), re.escape(end)))
matches = pattern.findall(s)
return matches[0] if matches else None
# Extract 'CHR2' values
df['CHR2'] = df['INFO'].apply(lambda x: extract_data(x, 'CHR2=', ';'))
# Extract 'END' values, excluding the 'END=' and the trailing ';'
df['END2'] = df['INFO'].apply(lambda x: extract_data(x, 'END=', ';'))
# 提取 merged_df 中的 chr2 和 end2 列,并重置索引以便合并
updated_values = merged_df1[['chr2', 'end2']].reset_index()
# 将 updated_values DataFrame 与 capra_anno_havegene 合并,基于 index 列
# 注意这里使用的是 left join,以保留 capra_anno_havegene 中所有的行
capra_anno_havegene_updated = pd.merge(capra_anno_havegene.reset_index(), updated_values, on='index', how='left', suffixes=('', '_updated'))
# 用 updated_values 中的数据更新 capra_anno_havegene 的对应列
capra_anno_havegene_updated['chr2'] = capra_anno_havegene_updated['chr2_updated'].fillna(capra_anno_havegene_updated['chr2'])
capra_anno_havegene_updated['end2'] = capra_anno_havegene_updated['end2_updated'].fillna(capra_anno_havegene_updated['end2'])
# 删除临时列
capra_anno_havegene_updated.drop(columns=['chr2_updated', 'end2_updated'], inplace=True)
# 恢复原始的 index
capra_anno_havegene_updated.set_index('index', inplace=True)
# 查看更新后的 DataFrame
capra_anno_havegene_updated
'''
#提取breakpoint中的END数据
pattern = r'END=(\d+);'
# 使用 Pandas 的 str.extract 方法提取符合条件的字符串
capra['END_values'] = capra['INFO'].str.extract(pattern)
#
breakpoint_goat = capra[['#CHROM','POS','END_values']]
#capra_281_plink = pd.read_csv(r'F:\svdata\all_test.vcf.vcf',header=582, sep='\t')
capra_281_plink = pd.read_csv(r'F:\svdata\test.vcf',sep='\t',header=560)
#capra_281_input = pd.read_csv(r'F:\svdata\capra_sample281.annovar.input',header=None,sep='\t')
capra_281_plink['type'] = capra['type']
capra_281_plink.insert(2,'end',capra['END_values'])
#SV_type_f = capra_281_plink.iloc[:,3:6]
'''
# 创建第四列 'type',根据条件填充
def match_types(row):
types = re.findall(r'(DEL|INV|DUP|BND)', row)
if not types: # 如果列表为空,说明未匹配到任何类型
return 'notag'
elif len(set(types)) == 1: # 如果列表中只有一个元素,说明匹配到了一种类型
return types[0]
else:
return 'merge' # 如果列表中有多个元素,说明匹配到了多种类型
# 对每一行打上SV的type标记
SV_type_f['type'] = 0
SV_type_f['type'] = SV_type_f.apply(lambda row: match_types(' '.join(map(str, row))), axis=1)
#先找TRA和BND
find_TRA = capra[capra.applymap(lambda x: pd.notna(x) and ('BND:' in str(x) or 'TRA:' in str(x)))]
TRA = find_TRA.dropna(how='all')
x = capra.iloc[TRA.index]
SV_type_f.iloc[TRA.index,-1] = 'BND'
#其他的notag为INV
SV_type_f.iloc[SV_type_f.query('type=="notag"').index,-1]='INV_1'
# 定义一个函数来从字符串中提取目标字符,获取INV的END
def extract_end(row):
pattern = r'\[(.*?)\[|\](.*?)\]'
ref_match = re.search(pattern, ['REF'])
alt_match = re.search(pattern, row['ALT'])
if ref_match and alt_match:
return ''.join(part for part in ref_match.groups() + alt_match.groups() if part is not None)
elif ref_match:
return ''.join(part for part in ref_match.groups() if part is not None)
elif alt_match:
return ''.join(part for part in alt_match.groups() if part is not None)
else:
return None
INV_END = SV_type_f.query('type=="INV_1"').apply(extract_end, axis=1)
capra_281_plink['type'] = SV_type_f['type']
capra_281_plink.iloc[capra_281_plink.query('type=="INV_1"').index,2] =INV_END
BND_CHRB_END = SV_type_f.query('type=="BND"').apply(extract_end, axis=1)
capra_281_plink.iloc[capra_281_plink.query('type=="BND"').index,2] = BND_CHRB_END
#capra_281_plink中的end列的每一项如果出现有:,则将其值替换为:以后的字符
capra_281_plink.end = capra_281_plink.end.astype(str)
def replace_colon(value):
"""
Parameters
----------
value : TYPE
DESCRIPTION.
Returns
-------
TYPE
DESCRIPTION.
"""
if ':' in value:
return value.split(':', 1)[1] # 将冒号后的部分提取出来
else:
return value
capra_281_plink['end'] = capra_281_plink['end'].apply(replace_colon)
'''
#capra_281_plink.insert(3,'len',capra_281_plink['end']-capra_281_plink['POS'])
#开始进行数目统计
#求长度diff
capra_281_plink_data = capra_281_plink.iloc[:,-282:-1]
#capra_281_plink.iloc[:,10:-3]
'''
#重新将分配给BND的INV找出来
find_INV = capra[capra.applymap(lambda x: pd.notna(x) and ('INV:' in str(x)))]
INV = find_INV.dropna(how='all')
capra_281_plink.iloc[INV.index,-1] = "INV"
'''
#将无法计算长度的TRA长度值赋予NA
capra_281_plink['diff'] = pd.to_numeric(capra_281_plink['end'], errors='coerce', downcast='float') - pd.to_numeric(capra_281_plink['POS'], errors='coerce', downcast='float')
'''
capra_281_plink_data['type'] = capra_281_plink['type']
capra_281_plink_data = capra_281_plink_data.replace('INV_1','INV')
capra_281_plink = capra_281_plink.replace('INV_1','INV')
'''
#sheep_532_plink_0110.to_csv(r'F:\svdata\sheep_532_plink_0110.vcf',sep='\t',index=None)
'''
#删除出现了重复的反向的inversion
capra_281_plink[capra_281_plink['diff'] <-1]
#先计算反向INV中end与其他所有POS相等的值,然后用end在反向INV的POS中验证重复的INV
same = capra_281_plink[capra_281_plink['POS'].isin(capra_281_plink[capra_281_plink['diff'] <-1]['end'].astype(int))]
s_f1 = capra_281_plink[capra_281_plink['diff'] <-1]['POS']
dup_INV = s_f1[s_f1.astype(int).isin(same['end'].astype(int))].index
#删除重复INV
capra_281_plink = capra_281_plink.drop(dup_INV)
#考虑删除merge了多种SV的行87069 --> 87040
capra_281_plink = capra_281_plink.query('type!="merge"')
'''
'''
处理INV反向重复
——————————————————————————————————————————————————————————
'''
capra_281_plink.iloc[:,1] = capra_281_plink.iloc[:,1].astype(int)
capra_281_plink.iloc[:,2] = capra_281_plink.iloc[:,2].astype(int)
checked_pairs = {}
# 循环遍历 DataFrame 数据,检查反向重复且在同一染色体上
for idx, row in capra_281_plink.iterrows():
pos = row['POS']
end = row['end']
chrom = row['#CHROM']
# 构建反向键
reverse_key = (chrom, end, pos)
# 检查是否已存在反向键,并确认是否在同一条染色体上
if reverse_key in checked_pairs:
# 仅添加后出现的行索引到删除列表
checked_pairs[reverse_key]['duplicates'].append(idx)
else:
# 否则,创建新键,记录首次出现的索引和后续重复的索引
checked_pairs[(chrom, pos, end)] = {'first': idx, 'duplicates': []}
# 获取所有重复的索引,仅包括后出现的索引
to_remove = [index for pair in checked_pairs.values() for index in pair['duplicates']]
# 删除这些索引的行
capra_281_plink = capra_281_plink.drop(to_remove)
#capra = capra.drop(to_remove)
'''
处理TRA重复
——————————————————————————————————————————————————————————
'''
# 筛选出 type 为 "TRA" 的数据
tra_data = capra_281_plink[capra_281_plink['type'] == 'TRA']
# 查找具有反向重复的行的索引
# 使用字典存储检查过的组合,避免重复检查
checked_pairs = {}
# 循环遍历 DataFrame 数据,检查反向重复
for idx, row in tra_data.iterrows():
pos = row['POS']
end = row['end']
# 构建反向键
reverse_key = (end, pos)
# 检查是否已存在反向键
if reverse_key in checked_pairs:
# 仅添加后出现的行索引到删除列表
checked_pairs[reverse_key]['duplicates'].append(idx)
else:
# 否则,创建新键,记录首次出现的索引和后续重复的索引
checked_pairs[(pos, end)] = {'first': idx, 'duplicates': []}
# 获取所有重复的索引,仅包括后出现的索引
to_remove = [index for pair in checked_pairs.values() for index in pair['duplicates']]
# 删除这些索引的行
capra_281_plink_clean = capra_281_plink.drop(to_remove)
#capra = capra.drop(to_remove)
#————————————————————————————————————————————————————————————————————————————————————————————
capra_281_plink = capra_281_plink_clean
#diff相减后要+1才是实际值
capra_281_plink['diff'] = capra_281_plink['diff'].abs()
capra_281_plink['diff'] = capra_281_plink['diff'] + 1
capra_281_plink = capra_281_plink.reset_index(drop=True)
capra_281_plink.iloc[capra_281_plink.query('type=="TRA"').index,-1]=None
'''###############################################
capra_281_plink.to_csv(r'F:\svdata\capra_281_plink_clean.vcf', index=None, sep='\t')
capra_281_plink = pd.read_csv(r'F:\svdata\capra_281_plink_clean.vcf',sep='\t')
capra_281_plink.type.value_counts()
Out[1058]:
DEL 65731
TRA 11372
DUP 6596
INV 2583
INS 1
Name: type, dtype: int64
sheep_532_plink_0110.to_csv(r'F:\svdata\sheep_532_plink_0110_clean.vcf', index=None, sep='\t')
sheep_532_plink_0110.type.value_counts()
'''
#capra.iloc[capra_281_plink.index,:-1].to_csv(r'F:\svdata\capra_svout_87404_nohead.vcf',index=None,sep='\t')
capra_281_plink_data = capra_281_plink.filter(regex='RR')
capra_281_plink_data_except_type = capra_281_plink_data.iloc[:, :]
# 找出元素为 "1/1" 或 "0/1" 的行
filtered_rows = capra_281_plink_data_except_type[(capra_281_plink_data_except_type == '1/1') | (capra_281_plink_data_except_type == '0/1')]
# 合并 type 列
capra_281_plink_data['type'] = capra_281_plink['type']
merged_type = pd.concat([filtered_rows, capra_281_plink_data['type'], capra_281_plink['diff']], axis=1)
# 遍历每一列,统计非缺失值的 type 列的出现次数
all_SVtype_data = []
for col in merged_type.columns[:-2]: # 排除最后一列 type
ind_sv = merged_type[[col, 'type']].dropna()['type']
non_na_type_counts = ind_sv.value_counts()
DEL_len = merged_type.iloc[ind_sv[ind_sv == 'DEL'].index]['diff'].abs().sum()
DUP_len = merged_type.iloc[ind_sv[ind_sv == 'DUP'].index]['diff'].abs().sum()
INV_len = merged_type.iloc[ind_sv[ind_sv == 'INV'].index]['diff'].abs().sum()
INS_len = merged_type.iloc[ind_sv[ind_sv == 'INS'].index]['diff'].abs().sum()
if INS_len !=0:
all_SVtype_data.append([merged_type[[col]].columns[0], non_na_type_counts.DEL, non_na_type_counts.DUP, non_na_type_counts.TRA, non_na_type_counts.INV, non_na_type_counts.INS, DEL_len, DUP_len, INV_len, INS_len])
else:
all_SVtype_data.append([merged_type[[col]].columns[0], non_na_type_counts.DEL, non_na_type_counts.DUP, non_na_type_counts.TRA, non_na_type_counts.INV, 0, DEL_len, DUP_len, INV_len, 0])
#print(f"Counts for {col}:")
#print(non_na_type_counts)
#print()
SVtype_data = pd.DataFrame(all_SVtype_data)
SVtype_data.columns = ['name', 'DEL', 'DUP', 'TRA', 'INV', 'INS', 'DEL_len', 'DUP_len', 'INV_len', 'INS_len']
#将vcf文件的sample中.1,.2这种删掉
#SVtype_data.iloc[SVtype_data[SVtype_data.name.str.contains('\.')].index,0] = [i[:-2] for i in SVtype_data[SVtype_data.name.str.contains('\.')].name]
SVtype_data['all_number'] = SVtype_data.DEL + SVtype_data.TRA + SVtype_data.DUP + SVtype_data.INV + SVtype_data.INS
SVtype_data['all_len'] = SVtype_data.DEL_len + SVtype_data.DUP_len + SVtype_data.INV_len + SVtype_data.INS_len
#根据名称信息将SRR转为对应的物种名
species = pd.read_csv(r'C:\Users\h\Desktop\SVdata\Species.txt',sep='\t')
species = species.iloc[:,[0,5,-1]]
species.columns = ['Species','code','name']
SV_result = pd.merge(species, SVtype_data, on='name')
#SVtype_data.to_excel(r'C:\Users\h\Desktop\GB图片修改\Table6.xlsx')
#SVtype_data.to_excel(r'C:\Users\h\Desktop\GB图片修改\Table6_sheep.xlsx') #20240514修改
SV_result.to_excel(r'C:\Users\h\Desktop\GB图片修改\Table6.xlsx')
#最终结果
capra_281_plink.to_csv(r'F:\svdata\SV_count_result.csv',index=None)
#统计table S7
#50-100bp 100bp-250bp 250bp-500bp 500bp-1kb 1kb-2kb 2kb-5kb 5kb-10kb 10kb-50kb 50kb-100kb 100kb-500kb 500kb-1Mb Total
def count_length(SV):
a = len(capra_281_plink.query('type==@SV and 50<diff<=100'))
b = len(capra_281_plink.query('type==@SV and 100<diff<=250'))
c = len(capra_281_plink.query('type==@SV and 250<diff<=500'))
d = len(capra_281_plink.query('type==@SV and 500<diff<=1000'))
e = len(capra_281_plink.query('type==@SV and 1000<diff<=2000'))
f = len(capra_281_plink.query('type==@SV and 2000<diff<=5000'))
g = len(capra_281_plink.query('type==@SV and 5000<diff<=10000'))
h = len(capra_281_plink.query('type==@SV and 10000<diff<=50000'))
i = len(capra_281_plink.query('type==@SV and 50000<diff<=100000'))
j = len(capra_281_plink.query('type==@SV and 100000<diff<=500000'))
k = len(capra_281_plink.query('type==@SV and 500000<diff<=1000000'))
return [a,b,c,d,e,f,g,h,i,j,k]
capra_281_plink['diff'] = capra_281_plink['diff'].abs()
all_count_length = []
all_count_length.append(count_length('DEL'))
all_count_length.append(count_length('DUP'))
all_count_length.append(count_length('INV'))
all_count_length.append(count_length('INS'))
pd.DataFrame(all_count_length)
#capra_281_plink[['#CHROM','POS','end','type']].query('type=="DEL"').to_csv(r'F:\svdata\capra_281_DEL.bed',index=None,header=None,sep='\t')
'''
Out[411]:
0 1 2 3 4 5 6 7 8 9 10
0 20053 16619 10638 8010 5850 2933 1002 462 77 72 15
1 766 3078 1130 661 533 187 92 112 24 12 1
2 80 227 350 737 674 271 106 86 11 29 11
3 1 0 0 0 0 0 0 0 0 0 0
'''
"____________________________________________________________________________"
"注释结果与基因数目和分布统计_______________________________________________________________________"
capra_anno_input
#Capra
#capra_anno = pd.read_csv(r'F:\svdata\capra_87404.sv.vcf.anno.variant_function',sep='\t',header=None)
#capra_anno = pd.read_csv(r'F:\svdata\capra_87404.type.anno.variant_function',sep='\t',header=None)
capra_anno = pd.read_csv(r'F:\svdata\capra_281_0515.variant_function',sep='\t',header=None)
#sheep_anno = pd.read_csv(r'F:\svdata\sheep_532_type.vcf.variant_function',sep='\t',header=None)
#capra_281_0515.anno
#capra_anno = capra_anno.iloc[:,3:]
capra_anno.columns = [0,1,2,3,4,5,6,7,8,9,10,11]
capra_anno_havegene = capra_anno[capra_anno[0] != "intergenic"]
"""
capra_anno[0].value_counts()
Out[1465]:
intergenic 49629
intronic 30384
upstream 1908
downstream 1808
exonic 1642
splicing 1073
ncRNA_intronic 846
UTR3 682
UTR5 375
ncRNA_exonic 291
ncRNA_splicing 31
Name: 0, dtype: int64
"""
#####################################################################################
# Apply the function to each row and expand any rows with multiple genes into separate rows
expanded_rows = []
for idx, row in capra_anno_havegene.iterrows():
genes = extract_genes(row[1])
for gene in genes:
new_row = row.copy()
new_row['gene'] = gene
expanded_rows.append(new_row)
#capra_anno_havegene
# Create a new DataFrame from the expanded rows
expanded_df = pd.DataFrame(expanded_rows).reset_index(drop=True)
expanded_df
count_gene_occurrences = capra_anno_havegene[1].str.contains('gene-').sum()
#用正则表达式提取所有基因
pattern = 'gene-(.*?)(?=,|$|\()'
#提取基因
all_gene_location = capra_anno_havegene[1].str.extractall(pattern).astype(str)
all_gene_loc
INFO = capra[capra['INFO'].str.contains('=TRA')][['#CHROM','POS','INFO']]
df = INFO
df['CHR2'] = df['INFO'].apply(lambda x: extract_data(x, 'CHR2=', ';'))
df['END2'] = df['INFO'].apply(lambda x: extract_data(x, 'END=', ';'))
capra['chr2'] = capra['#CHROM']
capra.loc[capra['type'] == "TRA", 'chr2'] = df['CHR2'].values
"____________________________________________________________________________"
"计算有多少个不重复基因,基因被外显子注释、内含子注释、还是都有。_______________________________________________________________________"
#其中一共有12908个基因被SV注释到,其中1725个基因被外显子注释到,454个基因只被外显子注释到。
#df_exploded[df_exploded[0]=='exonic'][1].drop_duplicates()
#df_exploded[df_exploded[0]=='intronic'][1].drop_duplicates()
import pandas as pd
def clean_gene_name(gene):
# 检查'gene-'前缀是否存在
if 'gene-' in gene:
# 如果存在,移除前缀和括号后的内容
return gene.strip().split('gene-')[1].split('(')[0]
else:
# 如果'gene-'前缀不存在,返回原始字符串(或可以选择返回None或特定的占位符)
return gene.strip()
"""
#capra_anno_havegene[[0, 10]] 计算DEL的不同类型,计算正文表2
#gene_SV_type = capra_anno_havegene[[0, 10]]
#gene_SV_type.columns = ['loc', 'type']
#pd.DataFrame(gene_SV_type.query('type=="DEL"')['loc']).value_counts()
import pandas as pd
# 假设 df 和 common_gene 已经被正确加载
import pandas as pd
import re
# 假设 df 和 common_gene 已经被正确加载
# 初始化一个空的DataFrame用于存放结果
result_df = pd.DataFrame(columns=df.columns)
# 更新正则表达式以匹配包括破折号和数字在内的基因名称
gene_pattern = r'-(\w[\w-]*\w)(?=[(,]|$)'
# 遍历df的每一行
for index, row in df.iterrows():
# 使用正则表达式找出所有满足条件的基因名称
genes = re.findall(gene_pattern, row[1])
# 遍历找到的基因名称
for gene in genes:
# 如果基因名称在common_gene中,则创建一个新的行添加到result_df中
if gene in common_gene[0].values:
new_row = row.copy()
new_row[1] = gene # 将第二列设置为当前的基因名称
result_df = result_df.append(new_row, ignore_index=True)
print(result_df)
result_df.query('type=="DUP"')['loc'].value_counts()
"""
'''
# Assuming capra_anno_havegene is similar to the sample_df defined earlier, with an additional requirement for handling multiple genes
def extract_genes(s):
pattern = re.compile(r'gene-([^\(,]+)')
return pattern.findall(s)
# Apply the function to each row and expand any rows with multiple genes into separate rows
expanded_rows = []
for idx, row in sample_df.iterrows():
genes = extract_genes(row[1])
for gene in genes:
new_row = row.copy()
new_row['gene'] = gene
expanded_rows.append(new_row)
#capra_anno_havegene
# Create a new DataFrame from the expanded rows
expanded_df = pd.DataFrame(expanded_rows).reset_index(drop=True)
expanded_df
import pandas as pd
# 假设 capra_ref 已经加载到 DataFrame 中
# 示例提取基因名、染色体、起始位置和结束位置
capra_ref = capra_ref[capra_ref[2] == 'gene']
capra_ref['gene'] = capra_ref[8].str.extract('Name=([^;]+)')
capra_ref['chromosome'] = capra_ref[0]
capra_ref['start_position'] = capra_ref[3]
capra_ref['end_position'] = capra_ref[4]
# 现在创建一个新的 DataFrame 仅包含所需列
genes_info = capra_ref[['gene', 'chromosome', 'start_position', 'end_position']].dropna()
expanded_df_merge = pd.merge(expanded_df, genes_info, on='gene', how='left')
expanded_df_merge.to_excel(r'F:\svdata\S14.xlsx')
# 示例提取基因名、染色体、起始位置和结束位置
sheep_ref = pd.read_csv(r'F:\svdata\Oar_rambouillet_v1.0x.gff',sep='\t',comment='#',header=None)
sheep_ref = sheep_ref[sheep_ref[2] == 'gene']
sheep_ref['gene'] = sheep_ref[8].str.extract('Name=([^;]+)')
sheep_ref['chromosome'] = sheep_ref[0]
sheep_ref['start_position'] = sheep_ref[3]
sheep_ref['end_position'] = sheep_ref[4]
# 现在创建一个新的 DataFrame 仅包含所需列
genes_info = sheep_ref[['gene', 'chromosome', 'start_position', 'end_position']].dropna()
expanded_df_merge = pd.merge(expanded_df, genes_info, on='gene', how='left')
expanded_df_merge.to_excel(r'F:\svdata\S15.xlsx')
result = expanded_df[[0,2,3,'chr2','end2','gene']]
gff = pd.read_csv(r'F:\svdata\extracted_genes.txt',header=None,sep=' ')
#转换GFF
# Adjusted function for replacing chromosome identifiers
def replace_chromosome_v2(chromosome):
prefix = "NC_0308"
if chromosome.startswith(prefix):
try:
# Extract the numerical part after the prefix and convert to integer
num = int(chromosome[len(prefix):].split('.')[0])
# Check if the number is within the desired range
if 8 <= num <= 36:
return str(num - 7) # Adjust the range to start from 1
except ValueError:
# In case the conversion to integer fails, return the original chromosome value
return chromosome
return chromosome
# Apply the adjusted function to the first column of the DataFrame
gff[0] = gff[0].apply(replace_chromosome_v2)
gff.columns = ['a','b','c','gene']
merge = pd.merge(expanded_df, gff, on='gene')
pd.merge(expanded_df, gff, on='gene').to_excel(r'F:\svdata\S14.xlsx')
# Adding new columns based on the conditions described by the user
merged_df['new_col_goat'] = np.where(merged_df['Chromosome_goat'] == '', '', merged_df['gene'])
merged_df['new_col_sheep'] = np.where(merged_df['Chromosome_sheep'] == '', '', merged_df['gene'])
######S15
sheep_result = pd.read_excel(r'C:\Users\h\Desktop\GB图片修改\Additional file 2.xlsx',sheet_name="Table S13 √",header=1)
goat_result = pd.read_excel(r'C:\Users\h\Desktop\GB图片修改\Additional file 2.xlsx',sheet_name="Table S14 √", header=1)
common_goat = pd.merge(common_genes, goat_result, on=['Gene ID'])
common_sheep = pd.merge(common_genes, sheep_result, on=['Gene ID'])
common_goat.columns = ['gene', 'Chromosome', 'Gene start', 'Gene end', 'SV chrA', 'SV start', 'SV chrB', 'SV end', 'SV type', 'Annotation']
common_sheep.columns = ['gene', 'Chromosome', 'Gene start', 'Gene end', 'SV chrA', 'SV start', 'SV chrB', 'SV end', 'SV type', 'Annotation']
# 为每个基因分配一个顺序号
common_sheep['order'] = common_sheep.groupby('gene').cumcount()
common_goat['order'] = common_goat.groupby('gene').cumcount()
# 找到每个基因在两个 DataFrame 中的最大出现次数
max_order_sheep = common_sheep.groupby('gene')['order'].max()
max_order_goat = common_goat.groupby('gene')['order'].max()
max_order = pd.concat([max_order_sheep, max_order_goat], axis=1).max(axis=1)
# 创建一个以基因和顺序号为组合键的 DataFrame
sheep_expanded = common_sheep.set_index(['gene', 'order']).reindex(
pd.MultiIndex.from_tuples(
[(gene, order) for gene in max_order.index for order in range(max_order[gene] + 1)],
names=['gene', 'order']
)
).reset_index()
goat_expanded = common_goat.set_index(['gene', 'order']).reindex(
pd.MultiIndex.from_tuples(
[(gene, order) for gene in max_order.index for order in range(max_order[gene] + 1)],
names=['gene', 'order']
)
).reset_index()
# 外部合并扩展后的 DataFrame
merged_df = pd.merge(sheep_expanded, goat_expanded, on=['gene', 'order'], how='outer', suffixes=('_sheep', '_goat'))
# 填充 NaN 值为空白
merged_df.fillna('', inplace=True)
# 删除辅助列 'order'
merged_df.drop('order', axis=1, inplace=True)
'''
# 应用更健壮的处理方法
df = capra_anno_havegene.iloc[:,:2]
split_genes = df[1].str.split(',').explode()
cleaned_genes = split_genes.apply(clean_gene_name)
# 重新统计不同基因的总数
unique_genes_count = cleaned_genes.nunique()
# 重新构建DataFrame,以便于筛选包含'exonic'的基因
df_exploded = pd.DataFrame({0: df[0].repeat(split_genes.groupby(split_genes.index).size()), 1: cleaned_genes})
# 筛选包含'exonic'的行,并提取基因名称
exonic_genes = df_exploded[1][df_exploded[0].str.contains("exonic")].unique()
# 重新计算包含'exonic'的不同基因数量
exonic_genes_count = len(exonic_genes)
unique_genes_count, exonic_genes_count
# 找到所有出现过的基因
all_genes = cleaned_genes.unique()
#goat_gene = all_genes
#sheep_gene = all_genes
# 初始化一个列表来保存只有'exonic'没有其他位置信息的基因
exonic_only_genes = []
# 对于每个基因,检查它是否只与'exonic'相关联
for gene in all_genes:
# 找到这个基因的所有位置信息
gene_positions = df_exploded[df_exploded[1] == gene][0].unique()
# 如果这个基因的位置信息只有'exonic',则添加到列表中
if len(gene_positions) == 1 and 'exonic' in gene_positions:
exonic_only_genes.append(gene)
# 计算只有'exonic'没有其他位置信息的基因数量
exonic_only_genes_count = len(exonic_only_genes)
exonic_only_genes_count
"____________________________________________________________________________"
#去重
all_gene = all_gene_location.drop_duplicates()
#all_gene = all_genes
result_str = ','.join(all_gene[0])
gene_df = pd.DataFrame(result_str.split(','))
#删除LOC开头的基因
gene_df = gene_df[~gene_df[0].str.startswith('LOC')]
#gene_df_sheep = pd.DataFrame(sheep_gene)
#gene_df_goat = pd.DataFrame(goat_gene)
#Sheep
sheep_anno = pd.read_csv(r'F:\svdata\sheep_532.type.anno1.variant_function',sep='\t',header=None)
#sheep_anno = pd.read_csv(r'F:\svdata\sheep-532-have-sv.annovar.variant_function',sep='\t',header=None)
sheep_anno_havegene = sheep_anno[sheep_anno[0] != "intergenic"]
all_gene_location = sheep_anno_havegene[1].str.extractall(pattern).astype(str)
"""
extracted_genes = sheep_anno_havegene[1].str.extractall(pattern).astype(str)
# 通过索引匹配将提取后的基因名称与原 DataFrame 合并
result = sheep_anno_havegene.loc[extracted_genes.index.get_level_values(0)].copy()
result['gene'] = extracted_genes[0].values
"""
all_gene = all_gene_location.drop_duplicates()
result_str = ','.join(all_gene[0])
gene_df_sheep = pd.DataFrame(result_str.split(','))
gene_df_sheep = gene_df_sheep[~gene_df[0].str.startswith('LOC')]
#计算SV注释到的merge基因
sheep_goat_merge = pd.merge(gene_df_sheep, gene_df, on='gene')
#计算山羊和绵羊SV注释到基因的交集 5948
pd.merge(gene_df, gene_df_sheep)
#common_gene.sort_values(by=[0])
"____________________________________________________________________________"
"Figure3A计算热点区域中有多少基因绘图 绘图网站:http://mg2c.iask.in/mg2c_v2.1/_______________________________________________________________________"
goat_hotspot_anno = pd.read_csv(r'F:\svdata\capra_hotspot_sv_anno.variant_function',sep='\t',header=None)
capra_anno_havegene = goat_hotspot_anno[goat_hotspot_anno[3] != "intergenic"]
count_gene_occurrences = capra_anno_havegene[4].str.contains('gene-').sum()
#用正则表达式提取所有基因
pattern = 'gene-(.*?)(?=,|$|\()'
#提取基因
all_gene_location = capra_anno_havegene[4].str.extractall(pattern).astype(str)
#去重
capra_all_gene = all_gene_location.drop_duplicates()
############ goat 1516个
sheep_hotspot_anno = pd.read_csv(r'F:\svdata\sheep_hotspot_sv_anno.variant_function',sep='\t',header=None)
sheep_anno_havegene = sheep_hotspot_anno[sheep_hotspot_anno[3] != "intergenic"]
count_gene_occurrences = sheep_anno_havegene[4].str.contains('gene-').sum()
#用正则表达式提取所有基因
pattern = 'gene-(.*?)(?=,|$|\()'
#提取基因
all_gene_location = sheep_anno_havegene[4].str.extractall(pattern).astype(str)
#去重
sheep_all_gene = all_gene_location.drop_duplicates()
#df_combined = df.groupby(['chr', 's', 't'])['gene'].apply(','.join).reset_index()
"____________________________________________________________________________"
"Figure3a数据计算,绘图文件准备_______________________________________________________________________"
#输出基因交集,用于绘制figure 3a
pd.merge(capra_all_gene,sheep_all_gene).to_csv(r'F:\svdata\hotspot_gene_goat-sheep.txt', index=None,header=None,sep='\t')
goat_sheep_hotspotgene = pd.merge(capra_all_gene,sheep_all_gene)
#输出sheep的热点区域与其注释基因的交集,在此处读取
sheep_hotspot_gene_old = pd.read_csv(r'F:\svdata\sheep_hotspot_sv.txt',sep='\t',header=None)
sheep_hotspot_gene = sheep_hotspot_gene_old.iloc[:,:7]
sheep_hotspot_gene = sheep_hotspot_gene[sheep_hotspot_gene[6] != "intergenic"]
pattern = 'gene-(.*?)(?=,|$|\()'
#提取基因
sheep_hotspot_gene = sheep_hotspot_gene.loc[sheep_hotspot_gene[7].drop_duplicates().index]
sheep_hotspot_gene[7] = sheep_hotspot_gene[7].replace(to_replace=r'gene-|\([^)]*\)', value='', regex=True)
sheep_hotspot_gene.columns = ['chr1','s1','t1','chr2','s2','t2','type','gene']
#去重
sheep_hotspot_gene = sheep_hotspot_gene.loc[sheep_hotspot_gene.gene.drop_duplicates().index]
goat_sheep_hotspotgene
goat_sheep_hotspotgene.columns = ['gene']
all_merge = pd.merge(sheep_hotspot_gene, goat_sheep_hotspotgene,on='gene')
all_merge.to_excel(r'F:\svdata\sheep_goat_hotspotgene.xlsx')
#进行处理#GPR146
all_merge = pd.read_excel(r'F:\svdata\sheep_goat_hotspotgene.xlsx')
#合并行,准备作为绘图数据
all_merge_plot = all_merge.groupby(['chr1', 's1', 't1'])['gene'].apply(','.join).reset_index()
"____________________________________________________________________________"
"Figure2a数据计算_______________________________________________________________________"
type1 = pd.read_csv(r'F:\svdata\type.txt','\t', header=None)
#type1 = pd.read_csv(r'F:\svdata\sheep_type1.txt','\t', header=None)
"""
######################对sheep的SV进行分类
find_DEL = sheep.loc[sheep['INFO'].str.contains('=DEL'), :].index
find_INV = sheep.loc[sheep['INFO'].str.contains('=INV'), :].index
find_DUP = sheep.loc[sheep['INFO'].str.contains('=DUP'), :].index
find_TRA = sheep.loc[sheep['INFO'].str.contains('=TRA'), :].index
find_INS = sheep.loc[sheep['INFO'].str.contains('=INS'), :].index
sheep_532_plink_0110.loc[find_DEL, 'type'] = 'DEL'
sheep_532_plink_0110.loc[find_INV, 'type'] = 'INV'
sheep_532_plink_0110.loc[find_DUP, 'type'] = 'DUP'
sheep_532_plink_0110.loc[find_TRA, 'type'] = 'TRA'
sheep_532_plink_0110.loc[find_INS, 'type'] = 'INS'
#sheep_532_plink_0110.to_csv(r'F:\svdata\sheep_532_plink_0110.vcf',sep='\t',index=None)
"""
# 从type1中获取Wild goat和Native goat的ID列表
wild_goat_ids = type1[type1[0] == 'Wild goat'][1].tolist()
native_goat_ids = type1[type1[0] == 'Native goat'][1].tolist()
improved_goat_ids = type1[type1[0] == 'Improved goat'][1].tolist()
# 从capra_281_plink中筛选出Wild goat和Native goat个体对应的列
wild_goat_df = capra_281_plink[wild_goat_ids]
native_goat_df = capra_281_plink[native_goat_ids]
improved_goat_df = capra_281_plink[improved_goat_ids]
wild_goat_df[['type','diff']] = capra_281_plink[['type','diff']]
native_goat_df[['type','diff']] = capra_281_plink[['type','diff']]
improved_goat_df[['type','diff']] = capra_281_plink[['type','diff']]
# 检查DataFrame中每行是否包含"0/1"或"1/1"
wild_goat_df_filtered = wild_goat_df[wild_goat_df.apply(lambda row: ('0/1' in row.values) or ('1/1' in row.values), axis=1)]
# 检查DataFrame中每行是否包含"0/1"或"1/1"
native_goat_df_filtered = native_goat_df[native_goat_df.apply(lambda row: ('0/1' in row.values) or ('1/1' in row.values), axis=1)]
improved_goat_df_filtered = improved_goat_df[improved_goat_df.apply(lambda row: ('0/1' in row.values) or ('1/1' in row.values), axis=1)]
# 获取每个DataFrame的索引集合
native_indices = set(native_goat_df_filtered.index)
wild_indices = set(wild_goat_df_filtered.index)
improved_indices = set(improved_goat_df_filtered.index)
# 找出只在native_goat_df_filtered中存在的索引
len(wild_indices - improved_indices - native_indices)
len(native_indices - wild_indices - improved_indices)
len(improved_indices - native_indices -wild_indices)
# 计算三个集合的交集
len(native_indices.intersection(wild_indices, improved_indices))
# 计算两两交集
len(native_indices.intersection(wild_indices))
len(native_indices.intersection(improved_indices))
len(wild_indices.intersection(improved_indices))
"""
len(wild_indices - improved_indices)
Out[1191]: 35816
len(wild_indices - improved_indices - native_indices)
Out[1192]: 31407
len(native_indices - wild_indices - improved_indices)
Out[1193]: 14323
len(improved_indices - native_indices -wild_indices)
Out[1194]: 1539
"""
capra_281_plink_plt = capra_281_plink.query('type!="BND"')
capra_281_plink_plt['diff'] = capra_281_plink_plt['diff'].abs()
capra_281_plink_plt = capra_281_plink_plt.query('50<diff<=1000').sort_values(by=['diff'])
#如果diff<0,则将起点和终点交换 additional file 2 S16
#capra_281_noTRA_st.loc[capra_281_noTRA_st['diff'] < 0, ['POS', 'end']] = capra_281_noTRA_st.loc[capra_281_noTRA_st['diff'] < 0, ['end', 'POS']].values
"____________________________________________________________________________"
"Figure2c绘图_______________________________________________________________________"
#读取0/1格式的绵羊和山羊数据
sheep_532_plink_0110 = pd.read_csv('F:\svdata\sheep_532_plink_0110.vcf', sep='\t')
sheep_532_plink_0110['animal'] = "sheep"
sheep_532_plink_0110 = sheep_532_plink_0110.drop('END_values',axis=1)
capra_281_plink = pd.read_csv(r'F:\svdata\SV_count_result.csv', sep=',')
#打上标签后合并长度数据
"""
x = sheep_anno.iloc[:,:5]
x.columns = ['loc','gene','chr','s','t']
sheep_532 = sheep_532_plink_0110[['#CHROM','POS','end','type']]
sheep_532.columns = ['chr','s','t','type']
x = x.query('loc!="intergenic"')
"""
capra_281_plink['animal'] = "goat"
sheep_diff = sheep_532_plink_0110[['type','diff','animal']]
goat_diff = capra_281_plink[['type','diff','animal']]
all_diff = pd.concat([sheep_diff, goat_diff])
#去NA、取绝对值、过滤到50-1000
all_diff = all_diff.dropna()
all_diff['diff'] = all_diff['diff'].abs()
#50-1000、1000-10000、>10000一共分3个梯度
diff1 = all_diff.query('50<diff<=1000')
diff2 = all_diff.query('1000<diff<=10000')
diff3 = all_diff.query('10000<diff<100000')
diff4 = all_diff.query('100000<diff')
import matplotlib.pyplot as plt
import pandas as pd
from statsmodels.nonparametric.smoothers_lowess import lowess
bin1 = np.arange(50, 1001, 10)
bin2 = np.arange(1000, 10001, 100)
bin3 = np.arange(10000, 100000, 1000)
bin4 = np.arange(100000, 1000000, 10000)
def diff_binplot(all_diff, bins, number):
# 计算diff值的计数,并对计数取对数
counts = all_diff['diff'].value_counts().sort_index()
log_counts = np.log10(counts)
#bins = np.arange(50, 1001, 10)
all_diff['bin'] = pd.cut(all_diff['diff'], bins=bins)
binned_data = all_diff.groupby(['bin', 'type', 'animal'])['diff'].agg(['count']).reset_index()
# 取对数
binned_data['log_count'] = np.log10(binned_data['count'])
# 创建图表
plt.figure(figsize=(14, 8))
# 分别绘制sheep和goat的曲线
for animal in ['sheep', 'goat']:
animal_data = binned_data[binned_data['animal'].str.lower() == animal]
for sv_type in animal_data['type'].unique():
type_data = animal_data[animal_data['type'] == sv_type]
linestyle = '-' if animal == 'sheep' else '--' # sheep为实线,goat为虚线
plt.plot(type_data['bin'].apply(lambda x: x.mid), type_data['log_count'], linestyle=linestyle, label=f'{animal.capitalize()}-{sv_type}')
# 添加图例
plt.legend()
# 添加标题和坐标轴标签
plt.title('Log10 Counts of SV Types by Animal Type')
plt.xlabel('SV Size (10 BP bins)')
plt.ylabel('Log10(Count)')
# 调整图表布局并展示
plt.tight_layout()
plt.savefig(r"F:\svdata\svplot\Figure2cS{}.pdf".format(number))
plt.show()
"____________________________________________________________________________"
"Figure2d绘图_______________________________________________________________________"
def calculate_maf(row):
# 计算每个等位基因的计数
allele_counts = row.str.cat(sep='').count('0'), row.str.cat(sep='').count('1')
# 计算总的有效等位基因数(排除了'./.')
total_alleles = sum(allele_counts)
# 计算次等位基因频率
if total_alleles == 0: # 防止除以零
return None
maf = min(allele_counts) / total_alleles
return maf
# 应用函数计算每个位点的MAF
maf_sheep = sheep_532_plink_0110.iloc[:, 10:-3].apply(calculate_maf, axis=1)
maf_goat = capra_281_plink.iloc[:, 10:-3].apply(calculate_maf, axis=1)
sheep_532_plink_0110['MAF'] = maf_sheep
capra_281_plink['MAF'] = maf_goat
all_maf = pd.concat([sheep_532_plink_0110[['type','MAF','animal']], capra_281_plink[['type','MAF','animal']]])
# 计算maf值的计数,并对计数取对数
counts = all_maf['MAF'].value_counts().sort_index()
log_counts = np.log10(counts)
bins = np.arange(-0.000001, 0.51, 0.01)
all_maf['bin'] = pd.cut(all_maf['MAF'], bins=bins)
binned_data = all_maf.groupby(['bin', 'type', 'animal'])['MAF'].agg(['count']).reset_index()
# 取对数
binned_data['log_count'] = np.log10(binned_data['count'])
# 创建图表
plt.figure(figsize=(14, 8))
# 分别绘制sheep和goat的曲线
for animal in ['sheep', 'goat']:
animal_data = binned_data[binned_data['animal'].str.lower() == animal]
for sv_type in animal_data['type'].unique():
type_data = animal_data[animal_data['type'] == sv_type]
linestyle = '-' if animal == 'sheep' else '--' # sheep为实线,goat为虚线
plt.plot(type_data['bin'].apply(lambda x: x.mid), type_data['log_count'], linestyle=linestyle, label=f'{animal.capitalize()}-{sv_type}')
# 添加图例
plt.legend()
# 添加标题和坐标轴标签
plt.title('Log10 Counts of SV Types by Animal Type')
plt.xlabel('SV Size (10 BP bins)')
plt.ylabel('Log10(Count)')
# 调整图表布局并展示
plt.tight_layout()
plt.savefig(r"F:\svdata\svplot\Figure2d.pdf")
plt.show()
"____________________________________________________________________________"
"Figure2F绘图_______________________________________________________________________"
data = {
'type': ['A', 'B', 'A', 'C', 'B', 'A', 'C', 'A', 'B', 'C'],
'BQ2602': ['0/0', '0/1', '1/1', '0/0', '1/1', '0/0', '1/1', '0/1', '1/1', '0/0'],
'BQ2620': ['0/1', '0/0', '0/1', '1/1', '0/0', '1/1', '0/0', '0/1', '1/1', '0/0'],
# ... 其他列
}
# 选取需要分析的列
genotypes = capra_281_plink.iloc[:, 10:-3]
# 初始化一个空的DataFrame来存储结果
type_counts_per_individual = pd.DataFrame(index=capra_281_plink['type'].unique(),columns=genotypes.columns)
# 对于每个个体(即DataFrame的每一列),统计各种type出现的次数
for individual in genotypes.columns:
# 筛选出符合条件的行索引
valid_indices = genotypes[individual].isin(['0/1', '1/1'])
# 根据这些索引,统计type的出现次数
counts = capra_281_plink.loc[valid_indices, 'type'].value_counts()
# 将统计结果添加到结果DataFrame中
type_counts_per_individual[individual] = counts
type_counts_per_individual = type_counts_per_individual.T
name_data = pd.read_csv(r'F:\svdata\Fig2Edata.txt', sep='\t', header=None)
name_data.columns = ['breed', 'type', 'name', 'srr']
#type_counts_per_individual = type_counts_per_individual.query('type != "Unknown" and type != "Hybrid"')
# 展示结果
type_counts_per_individual
type_counts_per_individual['breed'] = name_data['breed'].to_list()
type_counts_per_individual['type'] = name_data['type'].to_list()
merged_data = type_counts_per_individual.groupby(['breed', 'type']).mean().reset_index()