-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata.py
61 lines (48 loc) · 2.23 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import torch
from torch_geometric.data import Data
from torch_geometric.loader import DataLoader
from torch_geometric.nn import radius_graph
def get_random_graph(n_nodes, cutoff) -> Data:
positions = torch.randn(n_nodes, 3)
distance_matrix = positions[:, None, :] - positions[None, :, :]
distance_matrix = torch.linalg.norm(distance_matrix, dim=-1)
assert distance_matrix.shape == (n_nodes, n_nodes)
senders, receivers = torch.nonzero(distance_matrix < cutoff).T
z = torch.zeros(len(positions), dtype=torch.int32) # Create atomic_numbers tensor
# Create edge index tensor by stacking senders and receivers
edge_index = torch.stack([senders, receivers], dim=0)
# Create a PyTorch Geometric Data object
graph = Data(
pos = positions, # node positions
relative_vectors = positions[receivers] - positions[senders], # node relative positions
y=z, # graph label
edge_index=edge_index, # edge indices
numbers=torch.ones((len(positions),1)), # node features
)
return graph
def get_tetris():
"""Get the Tetris dataset."""
all_positions = [
[[0, 0, 0], [0, 0, 1], [1, 0, 0], [1, 1, 0]], # chiral_shape_1
[[1, 1, 1], [1, 1, 2], [2, 1, 1], [2, 0, 1]], # chiral_shape_2
[[0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0]], # square
[[0, 0, 0], [0, 0, 1], [0, 0, 2], [0, 0, 3]], # line
[[0, 0, 0], [0, 0, 1], [0, 1, 0], [1, 0, 0]], # corner
[[0, 0, 0], [0, 0, 1], [0, 0, 2], [0, 1, 0]], # L
[[0, 0, 0], [0, 0, 1], [0, 0, 2], [0, 1, 1]], # T
[[0, 0, 0], [1, 0, 0], [1, 1, 0], [2, 1, 0]], # zigzag
]
all_positions = torch.tensor(all_positions, dtype=torch.float32)
all_labels = torch.arange(8)
graphs = []
for positions, label in zip(all_positions, all_labels):
edge_index = radius_graph(positions, r=1.1)
senders, receivers = edge_index
data = Data(
numbers=torch.ones((len(positions),1)), # node features
pos=positions, # node positions
edge_index=edge_index, # edge indices
y=label # graph label
)
graphs.append(data)
return next(iter(DataLoader(graphs, batch_size=len(graphs))))