diff --git a/asreviewcontrib/insights/algorithms.py b/asreviewcontrib/insights/algorithms.py index e09ed01..1b44696 100644 --- a/asreviewcontrib/insights/algorithms.py +++ b/asreviewcontrib/insights/algorithms.py @@ -28,10 +28,8 @@ def _loss_value(labels): best_auc = Nx * Ny - ((Ny * (Ny - 1)) / 2) # Compute recall values (y) based on the provided labels. - y = np.array(_recall_values(labels, x_absolute=True, y_absolute=True)[1]) - # The actual AUC is the sum of the recall curve. - actual_auc = np.sum(y) + actual_auc = np.cumsum(labels).sum() # The worst AUC represents the area under the worst-case step curve, which # is the area under the recall curve where all positive labels are clumped