-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathPM_Sensorless.c
executable file
·1561 lines (1259 loc) · 59.9 KB
/
PM_Sensorless.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* ==============================================================================
System Name: PM_Sensorless
File Name: PM_Sensorless.C
Description: Primary system file for the Real Implementation of Sensorless
Field Orientation Control for Three Phase Permanent-Magnet
Synchronous Motor(s) (PMSM)
Originator: Digital control systems Group - Texas Instruments
Note: In this software, the default inverter is supposed to be DRV8412-EVM kit.
=====================================================================================
History: 04-9-2010 Version 1.1: Support F2803x
================================================================================= */
// Include header files used in the main function
#include "PeripheralHeaderIncludes.h"
#include "PM_Sensorless-Settings.h"
#include "IQmathLib.h"
#include "PM_Sensorless.h"
#include <math.h>
#ifdef DRV8301
union DRV8301_STATUS_REG_1 DRV8301_stat_reg1;
union DRV8301_STATUS_REG_2 DRV8301_stat_reg2;
union DRV8301_CONTROL_REG_1 DRV8301_cntrl_reg1;
union DRV8301_CONTROL_REG_2 DRV8301_cntrl_reg2;
Uint16 read_drv_status = 0;
#endif
// Prototype statements for functions found within this file.
interrupt void MainISR(void);
void DeviceInit();
void MemCopy();
void InitFlash();
// State Machine function prototypes
//------------------------------------
// Alpha states
void A0(void); //state A0
void B0(void); //state B0
void C0(void); //state C0
// A branch states
void A1(void); //state A1
void A2(void); //state A2
void A3(void); //state A3
// B branch states
void B1(void); //state B1
void B2(void); //state B2
void B3(void); //state B3
// C branch states
void C1(void); //state C1
void C2(void); //state C2
void C3(void); //state C3
// Variable declarations
void (*Alpha_State_Ptr)(void); // Base States pointer
void (*A_Task_Ptr)(void); // State pointer A branch
void (*B_Task_Ptr)(void); // State pointer B branch
void (*C_Task_Ptr)(void); // State pointer C branch
// Used for running BackGround in flash, and ISR in RAM
extern Uint16 *RamfuncsLoadStart, *RamfuncsLoadEnd, *RamfuncsRunStart;
int16 VTimer0[4]; // Virtual Timers slaved off CPU Timer 0 (A events)
int16 VTimer1[4]; // Virtual Timers slaved off CPU Timer 1 (B events)
int16 VTimer2[4]; // Virtual Timers slaved off CPU Timer 2 (C events)
int16 SerialCommsTimer;
// Global variables used in this system
_iq VdTesting = _IQ(0.0); // Vd reference (pu)
_iq VqTesting = _IQ(0.2); // Vq reference (pu)
_iq IdRef = _IQ(0.0); // Id reference (pu)
_iq IqRef = _IQ(0.1); // Iq reference (pu)
_iq SpeedRef = _IQ(0.25); // Speed reference (pu)
_iq cal_offset_A = _IQ15(0.4990); //F28035
_iq cal_offset_B = _IQ15(0.5034); //F28035
//_iq cal_offset_A = _IQ15(0.5);
//_iq cal_offset_B = _IQ15(0.5);
_iq cal_filt_gain;
float32 T = 0.001/ISR_FREQUENCY; // Samping period (sec), see parameter.h
Uint32 IsrTicker = 0;
Uint16 BackTicker = 0;
Uint16 lsw=0;
int16 PwmDacCh1=0;
int16 PwmDacCh2=0;
int16 PwmDacCh3=0;
int16 PwmDacCh4=0;
int16 DlogCh1 = 0;
int16 DlogCh2 = 0;
int16 DlogCh3 = 0;
int16 DlogCh4 = 0;
#if (BUILDLEVEL==LEVEL1)
Uint16 DRV_RESET = 1;
#else
Uint16 DRV_RESET = 0;
#endif
volatile Uint16 EnableFlag = FALSE;
Uint16 LockRotorFlag = FALSE;
Uint16 RunMotor = FALSE;
Uint16 SpeedLoopPrescaler = 10; // Speed loop prescaler
Uint16 SpeedLoopCount = 1; // Speed loop counter
// Instance a position estimator
SMOPOS smo1 = SMOPOS_DEFAULTS;
// Instance a sliding-mode position observer constant Module
SMOPOS_CONST smo1_const = SMOPOS_CONST_DEFAULTS;
// Instance a QEP interface driver
QEP qep1 = QEP_DEFAULTS;
// Instance a few transform objects
CLARKE clarke1 = CLARKE_DEFAULTS;
PARK park1 = PARK_DEFAULTS;
IPARK ipark1 = IPARK_DEFAULTS;
// Instance PID regulators to regulate the d and q axis currents, and speed
PID_GRANDO_CONTROLLER pid1_id = {PID_TERM_DEFAULTS,PID_PARAM_DEFAULTS,PID_DATA_DEFAULTS};
PID_GRANDO_CONTROLLER pid1_iq = {PID_TERM_DEFAULTS,PID_PARAM_DEFAULTS,PID_DATA_DEFAULTS};
PID_GRANDO_CONTROLLER pid1_spd = {PID_TERM_DEFAULTS,PID_PARAM_DEFAULTS,PID_DATA_DEFAULTS};
// Instance a PWM driver instance
PWMGEN pwm1 = PWMGEN_DEFAULTS;
// Instance a PWM DAC driver instance
PWMDAC pwmdac1 = PWMDAC_DEFAULTS;
// Instance a Space Vector PWM modulator. This modulator generates a, b and c
// phases based on the d and q stationery reference frame inputs
SVGENDQ svgen_dq1 = SVGENDQ_DEFAULTS;
// Instance a ramp controller to smoothly ramp the frequency
RMPCNTL rc1 = RMPCNTL_DEFAULTS;
// Instance a ramp generator to simulate an Anglele
RAMPGEN rg1 = RAMPGEN_DEFAULTS;
// Instance a phase voltage calculation
PHASEVOLTAGE volt1 = PHASEVOLTAGE_DEFAULTS;
// Instance a speed calculator based on QEP
SPEED_MEAS_QEP speed1 = SPEED_MEAS_QEP_DEFAULTS;
// Instance a speed calculator based on sliding-mode position observer
SPEED_ESTIMATION speed3 = SPEED_ESTIMATION_DEFAULTS;
// Create an instance of DATALOG Module
DLOG_4CH dlog = DLOG_4CH_DEFAULTS;
void main(void)
{
DeviceInit(); // Device Life support & GPIO
// Only used if running from FLASH
// Note that the variable FLASH is defined by the compiler
// (see TwoChannelBuck.pjt file)
#ifdef FLASH
// Copy time critical code and Flash setup code to RAM
// The RamfuncsLoadStart, RamfuncsLoadEnd, and RamfuncsRunStart
// symbols are created by the linker. Refer to the linker files.
MemCopy(&RamfuncsLoadStart, &RamfuncsLoadEnd, &RamfuncsRunStart);
// Call Flash Initialization to setup flash waitstates
// This function must reside in RAM
InitFlash(); // Call the flash wrapper init function
#endif //(FLASH)
// Waiting for enable flag set
while (EnableFlag==FALSE)
{
BackTicker++;
}
// Timing sync for slow background tasks
// Timer period definitions found in device specific PeripheralHeaderIncludes.h
CpuTimer0Regs.PRD.all = mSec1; // A tasks
CpuTimer1Regs.PRD.all = mSec5; // B tasks
CpuTimer2Regs.PRD.all = mSec50; // C tasks
// Tasks State-machine init
Alpha_State_Ptr = &A0;
A_Task_Ptr = &A1;
B_Task_Ptr = &B1;
C_Task_Ptr = &C1;
// Initialize PWM module
pwm1.PeriodMax = SYSTEM_FREQUENCY*1000000*T/2; // Prescaler X1 (T1), ISR period = T x 1
PWM_INIT_MACRO(pwm1)
// Initialize PWMDAC module
pwmdac1.PeriodMax = 500; // @60Mhz: 1500->20kHz, 1000-> 30kHz, 500->60kHz
pwmdac1.PwmDacInPointer0 = &PwmDacCh1;
pwmdac1.PwmDacInPointer1 = &PwmDacCh2;
pwmdac1.PwmDacInPointer2 = &PwmDacCh3;
pwmdac1.PwmDacInPointer3 = &PwmDacCh4;
PWMDAC_INIT_MACRO(pwmdac1)
// Initialize DATALOG module
dlog.iptr1 = &DlogCh1;
dlog.iptr2 = &DlogCh2;
dlog.iptr3 = &DlogCh3;
dlog.iptr4 = &DlogCh4;
dlog.trig_value = 0x1;
dlog.size = 0x00c8;
dlog.prescalar = 5;
dlog.init(&dlog);
// Initialize ADC module
ADC_MACRO()
// Initialize QEP module
qep1.LineEncoder = 2048;
qep1.MechScaler = _IQ30(0.25/qep1.LineEncoder);
qep1.PolePairs = POLES/2;
qep1.CalibratedAngle = 0;
QEP_INIT_MACRO(qep1)
// Initialize the Speed module for QEP based speed calculation
speed1.K1 = _IQ21(1/(BASE_FREQ*T));
speed1.K2 = _IQ(1/(1+T*2*PI*5)); // Low-pass cut-off frequency
speed1.K3 = _IQ(1)-speed1.K2;
speed1.BaseRpm = 120*(BASE_FREQ/POLES);
// Initialize the SPEED_EST module SMOPOS based speed calculation
speed3.K1 = _IQ21(1/(BASE_FREQ*T));
speed3.K2 = _IQ(1/(1+T*2*PI*5)); // Low-pass cut-off frequency
speed3.K3 = _IQ(1)-speed3.K2;
speed3.BaseRpm = 120*(BASE_FREQ/POLES);
// Initialize the RAMPGEN module
rg1.StepAngleMax = _IQ(BASE_FREQ*T);
// Initialize the SMOPOS constant module
smo1_const.Rs = RS;
smo1_const.Ls = LS;
smo1_const.Ib = BASE_CURRENT;
smo1_const.Vb = BASE_VOLTAGE;
smo1_const.Ts = T;
SMO_CONST_MACRO(smo1_const)
// Initialize the SMOPOS module
smo1.Fsmopos = _IQ(smo1_const.Fsmopos);
smo1.Gsmopos = _IQ(smo1_const.Gsmopos);
smo1.Kslide = _IQ(0.15);
smo1.Kslf = _IQ(0.10);
// Initialize the PID_GRANDO_CONTROLLER module for Id
pid1_id.param.Kp = _IQ(3.176*BASE_CURRENT/BASE_VOLTAGE); //Anaheim
// pid1_id.param.Kp = _IQ(0.25*BASE_CURRENT/BASE_VOLTAGE); //test motor 24V
// pid1_id.param.Kp = _IQ(0.125*BASE_CURRENT/BASE_VOLTAGE); //test motor 48V
pid1_id.param.Kr = _IQ(1.0);
pid1_id.param.Ki = _IQ(T/0.0005); //Anaheim
// pid1_id.param.Ki = _IQ(T/0.0956); //test motor
pid1_id.param.Kd = _IQ(0/T);
pid1_id.param.Km = _IQ(1.0);
pid1_id.param.Umax = _IQ(0.50);
pid1_id.param.Umin = _IQ(-0.50);
// Initialize the PID_GRANDO_CONTROLLER module for Iq
pid1_iq.param.Kp = _IQ(3.176*BASE_CURRENT/BASE_VOLTAGE); //Anaheim
// pid1_iq.param.Kp = _IQ(0.25*BASE_CURRENT/BASE_VOLTAGE); //test motor 24V
// pid1_iq.param.Kp = _IQ(0.125*BASE_CURRENT/BASE_VOLTAGE); //test motor 48V
pid1_iq.param.Kr = _IQ(1.0);
pid1_iq.param.Ki = _IQ(T/0.0005); //Anaheim
// pid1_iq.param.Ki = _IQ(T/0.0956); //test motor
pid1_iq.param.Kd = _IQ(0/T);
pid1_iq.param.Km = _IQ(1.0);
pid1_iq.param.Umax = _IQ(0.95);
pid1_iq.param.Umin = _IQ(-0.95);
// Initialize the PID_GRANDO_CONTROLLER module for Speed
pid1_spd.param.Kp = _IQ(0.2*BASE_FREQ/BASE_CURRENT/(POLES/2)); //Anaheim
// pid1_spd.param.Kp = _IQ(1.0*BASE_FREQ/BASE_CURRENT/(POLES/2)); //test motor
pid1_spd.param.Kr = _IQ(1.0);
pid1_spd.param.Ki = _IQ(T*SpeedLoopPrescaler/0.3); //Anaheim
// pid1_spd.param.Ki = _IQ(T*SpeedLoopPrescaler/0.6); //test motor
pid1_spd.param.Kd = _IQ(0/(T*SpeedLoopPrescaler));
pid1_spd.param.Km = _IQ(1.0);
pid1_spd.param.Umax = _IQ(0.95);
pid1_spd.param.Umin = _IQ(-0.95);
// Initialize the phase current offset calibration filter
cal_filt_gain = _IQ15(T/(T+TC_CAL));
#ifdef DRV8301
// Initialize SPI for communication to the DRV8301
DRV8301_SPI_Init(&SpibRegs);
#endif
// Reassign ISRs.
EALLOW; // This is needed to write to EALLOW protected registers
PieVectTable.EPWM1_INT = &MainISR;
EDIS;
// Enable PIE group 3 interrupt 1 for EPWM1_INT
PieCtrlRegs.PIEIER3.bit.INTx1 = 1;
// Enable CNT_zero interrupt using EPWM1 Time-base
EPwm1Regs.ETSEL.bit.INTEN = 1; // Enable EPWM1INT generation
EPwm1Regs.ETSEL.bit.INTSEL = 1; // Enable interrupt CNT_zero event
EPwm1Regs.ETPS.bit.INTPRD = 1; // Generate interrupt on the 1st event
EPwm1Regs.ETCLR.bit.INT = 1; // Enable more interrupts
// Enable CPU INT3 for EPWM1_INT:
IER |= M_INT3;
// Enable global Interrupts and higher priority real-time debug events:
EINT; // Enable Global interrupt INTM
ERTM; // Enable Global realtime interrupt DBGM
// IDLE loop. Just sit and loop forever:
for(;;) //infinite loop
{
// State machine entry & exit point
//===========================================================
(*Alpha_State_Ptr)(); // jump to an Alpha state (A0,B0,...)
//===========================================================
#ifdef DRV8301
//read the status registers from the DRV8301
if(read_drv_status)
{
if(GpioDataRegs.GPADAT.bit.GPIO14 == 0)
{
DRV8301_stat_reg1.all = DRV8301_SPI_Read(&SpibRegs,STAT_REG_1_ADDR);
DRV8301_stat_reg2.all = DRV8301_SPI_Read(&SpibRegs,STAT_REG_2_ADDR);
read_drv_status = 0;
}
}
#endif
}
} //END MAIN CODE
//=================================================================================
// STATE-MACHINE SEQUENCING AND SYNCRONIZATION FOR SLOW BACKGROUND TASKS
//=================================================================================
//--------------------------------- FRAMEWORK -------------------------------------
void A0(void)
{
// loop rate synchronizer for A-tasks
if(CpuTimer0Regs.TCR.bit.TIF == 1)
{
CpuTimer0Regs.TCR.bit.TIF = 1; // clear flag
//-----------------------------------------------------------
(*A_Task_Ptr)(); // jump to an A Task (A1,A2,A3,...)
//-----------------------------------------------------------
VTimer0[0]++; // virtual timer 0, instance 0 (spare)
SerialCommsTimer++;
}
Alpha_State_Ptr = &B0; // Comment out to allow only A tasks
}
void B0(void)
{
// loop rate synchronizer for B-tasks
if(CpuTimer1Regs.TCR.bit.TIF == 1)
{
CpuTimer1Regs.TCR.bit.TIF = 1; // clear flag
//-----------------------------------------------------------
(*B_Task_Ptr)(); // jump to a B Task (B1,B2,B3,...)
//-----------------------------------------------------------
VTimer1[0]++; // virtual timer 1, instance 0 (spare)
}
Alpha_State_Ptr = &C0; // Allow C state tasks
}
void C0(void)
{
// loop rate synchronizer for C-tasks
if(CpuTimer2Regs.TCR.bit.TIF == 1)
{
CpuTimer2Regs.TCR.bit.TIF = 1; // clear flag
//-----------------------------------------------------------
(*C_Task_Ptr)(); // jump to a C Task (C1,C2,C3,...)
//-----------------------------------------------------------
VTimer2[0]++; //virtual timer 2, instance 0 (spare)
}
Alpha_State_Ptr = &A0; // Back to State A0
}
//=================================================================================
// A - TASKS (executed in every 1 msec)
//=================================================================================
//--------------------------------------------------------
void A1(void) // SPARE (not used)
//--------------------------------------------------------
{
if (EnableFlag == FALSE)
{
//de-assert the DRV830x EN_GATE pin
#ifdef DSP2803x_DEVICE_H
GpioDataRegs.GPBCLEAR.bit.GPIO39 = 1;
#endif
RunMotor = FALSE;
EALLOW;
EPwm1Regs.TZFRC.bit.OST=1;
EPwm2Regs.TZFRC.bit.OST=1;
EPwm3Regs.TZFRC.bit.OST=1;
EDIS;
}
else if((EnableFlag == TRUE) && (RunMotor == FALSE))
{
#ifdef DRV8302
#if DRV_GAIN == 10
GpioDataRegs.GPACLEAR.bit.GPIO25 = 1; // GAIN = 10
#elif DRV_GAIN == 40
GpioDataRegs.GPASET.bit.GPIO25 = 1; // GAIN = 40
#else
#error Invalid GAIN setting for DRV8302!!
#endif
//GpioDataRegs.GPACLEAR.bit.GPIO24 = 1; // M_OC - cycle by cycle current limit
GpioDataRegs.GPASET.bit.GPIO24 = 1; // M_OC - fault on OC
#endif
//if we want the power stage active we need to enable the DRV830x
//and configure it.
if(DRV_RESET == 0)
{
//assert the DRV830x EN_GATE pin
#ifdef DSP2803x_DEVICE_H
GpioDataRegs.GPBSET.bit.GPIO39 = 1;
#endif
DELAY_US(50000); //delay to allow DRV830x supplies to ramp up
#ifdef DRV8301
DRV8301_cntrl_reg1.bit.GATE_CURRENT = 0; // full current 1.7A
// DRV8301_cntrl_reg1.bit.GATE_CURRENT = 1; // med current 0.7A
// DRV8301_cntrl_reg1.bit.GATE_CURRENT = 2; // min current 0.25A
DRV8301_cntrl_reg1.bit.GATE_RESET = 0; // Normal Mode
DRV8301_cntrl_reg1.bit.PWM_MODE = 0; // six independant PWMs
// DRV8301_cntrl_reg1.bit.OC_MODE = 0; // current limiting when OC detected
DRV8301_cntrl_reg1.bit.OC_MODE = 1; // latched OC shutdown
// DRV8301_cntrl_reg1.bit.OC_MODE = 2; // Report on OCTWn pin and SPI reg only, no shut-down
// DRV8301_cntrl_reg1.bit.OC_MODE = 3; // OC protection disabled
// DRV8301_cntrl_reg1.bit.OC_ADJ_SET = 0; // OC @ Vds=0.060V
// DRV8301_cntrl_reg1.bit.OC_ADJ_SET = 4; // OC @ Vds=0.097V
// DRV8301_cntrl_reg1.bit.OC_ADJ_SET = 6; // OC @ Vds=0.123V
// DRV8301_cntrl_reg1.bit.OC_ADJ_SET = 9; // OC @ Vds=0.175V
DRV8301_cntrl_reg1.bit.OC_ADJ_SET = 15; // OC @ Vds=0.358V
// DRV8301_cntrl_reg1.bit.OC_ADJ_SET = 16; // OC @ Vds=0.403V
// DRV8301_cntrl_reg1.bit.OC_ADJ_SET = 17; // OC @ Vds=0.454V
// DRV8301_cntrl_reg1.bit.OC_ADJ_SET = 18; // OC @ Vds=0.511V
DRV8301_cntrl_reg1.bit.Reserved = 0;
// DRV8301_cntrl_reg2.bit.OCTW_SET = 0; // report OT and OC
DRV8301_cntrl_reg2.bit.OCTW_SET = 1; // report OT only
#if DRV_GAIN == 10
DRV8301_cntrl_reg2.bit.GAIN = 0; // CS amplifier gain = 10
#elif DRV_GAIN == 20
DRV8301_cntrl_reg2.bit.GAIN = 1; // CS amplifier gain = 20
#elif DRV_GAIN == 40
DRV8301_cntrl_reg2.bit.GAIN = 2; // CS amplifier gain = 40
#elif DRV_GAIN == 80
DRV8301_cntrl_reg2.bit.GAIN = 3; // CS amplifier gain = 80
#endif
DRV8301_cntrl_reg2.bit.DC_CAL_CH1 = 0; // not in CS calibrate mode
DRV8301_cntrl_reg2.bit.DC_CAL_CH2 = 0; // not in CS calibrate mode
DRV8301_cntrl_reg2.bit.OC_TOFF = 0; // normal mode
DRV8301_cntrl_reg2.bit.Reserved = 0;
//write to DRV8301 control register 1, returns status register 1
DRV8301_stat_reg1.all = DRV8301_SPI_Write(&SpibRegs,CNTRL_REG_1_ADDR,DRV8301_cntrl_reg1.all);
//write to DRV8301 control register 2, returns status register 1
DRV8301_stat_reg1.all = DRV8301_SPI_Write(&SpibRegs,CNTRL_REG_2_ADDR,DRV8301_cntrl_reg2.all);
#endif
}
speed3.EstimatedSpeed=0;
speed3.EstimatedTheta=0;
speed3.OldEstimatedTheta=0;
speed3.EstimatedSpeedRpm=0;
rg1.Freq=0;
rg1.Out=0;
rg1.Angle=0;
rc1.TargetValue=0;
rc1.SetpointValue=0;
smo1.Theta=0;
smo1.Ealpha=0;
smo1.Ebeta=0;
pid1_id.data.d1 = 0;
pid1_id.data.d2 = 0;
pid1_id.data.i1 = 0;
pid1_id.data.ud = 0;
pid1_id.data.ui = 0;
pid1_id.data.up = 0;
pid1_id.data.v1 = 0;
pid1_id.data.w1 = 0;
pid1_id.term.Out = 0;
pid1_iq.data.d1 = 0;
pid1_iq.data.d2 = 0;
pid1_iq.data.i1 = 0;
pid1_iq.data.ud = 0;
pid1_iq.data.ui = 0;
pid1_iq.data.up = 0;
pid1_iq.data.v1 = 0;
pid1_iq.data.w1 = 0;
pid1_iq.term.Out = 0;
pid1_spd.data.d1 = 0;
pid1_spd.data.d2 = 0;
pid1_spd.data.i1 = 0;
pid1_spd.data.ud = 0;
pid1_spd.data.ui = 0;
pid1_spd.data.up = 0;
pid1_spd.data.v1 = 0;
pid1_spd.data.w1 = 0;
pid1_spd.term.Out = 0;
lsw=0;
RunMotor = TRUE;
EALLOW;
EPwm1Regs.TZCLR.bit.OST=1;
EPwm2Regs.TZCLR.bit.OST=1;
EPwm3Regs.TZCLR.bit.OST=1;
EDIS;
}
//-------------------
//the next time CpuTimer0 'counter' reaches Period value go to A2
A_Task_Ptr = &A2;
//-------------------
}
//-----------------------------------------------------------------
void A2(void) // SPARE (not used)
//-----------------------------------------------------------------
{
//-------------------
//the next time CpuTimer0 'counter' reaches Period value go to A3
A_Task_Ptr = &A3;
//-------------------
}
//-----------------------------------------
void A3(void) // SPARE (not used)
//-----------------------------------------
{
//-----------------
//the next time CpuTimer0 'counter' reaches Period value go to A1
A_Task_Ptr = &A1;
//-----------------
}
//=================================================================================
// B - TASKS (executed in every 5 msec)
//=================================================================================
//----------------------------------- USER ----------------------------------------
//----------------------------------------
void B1(void) // Toggle GPIO-00
//----------------------------------------
{
//-----------------
//the next time CpuTimer1 'counter' reaches Period value go to B2
B_Task_Ptr = &B2;
//-----------------
}
//----------------------------------------
void B2(void) // SPARE
//----------------------------------------
{
//-----------------
//the next time CpuTimer1 'counter' reaches Period value go to B3
B_Task_Ptr = &B3;
//-----------------
}
//----------------------------------------
void B3(void) // SPARE
//----------------------------------------
{
//-----------------
//the next time CpuTimer1 'counter' reaches Period value go to B1
B_Task_Ptr = &B1;
//-----------------
}
//=================================================================================
// C - TASKS (executed in every 50 msec)
//=================================================================================
//--------------------------------- USER ------------------------------------------
//----------------------------------------
void C1(void) // Toggle GPIO-34
//----------------------------------------
{
GpioDataRegs.GPBTOGGLE.bit.GPIO34 = 1; // Blink LED
//-----------------
//the next time CpuTimer2 'counter' reaches Period value go to C2
C_Task_Ptr = &C2;
//-----------------
}
//----------------------------------------
void C2(void) // SPARE
//----------------------------------------
{
//-----------------
//the next time CpuTimer2 'counter' reaches Period value go to C3
C_Task_Ptr = &C3;
//-----------------
}
//-----------------------------------------
void C3(void) // SPARE
//-----------------------------------------
{
//-----------------
//the next time CpuTimer2 'counter' reaches Period value go to C1
C_Task_Ptr = &C1;
//-----------------
}
// MainISR
interrupt void MainISR(void)
{
// Verifying the ISR
IsrTicker++;
if(RunMotor)
{
// =============================== LEVEL 1 ======================================
// Checks target independent modules, duty cycle waveforms and PWM update
// Keep the motors disconnected at this level
// ==============================================================================
#if (BUILDLEVEL==LEVEL1)
// ------------------------------------------------------------------------------
// Connect inputs of the RMP module and call the ramp control macro
// ------------------------------------------------------------------------------
rc1.TargetValue = SpeedRef;
RC_MACRO(rc1)
// ------------------------------------------------------------------------------
// Connect inputs of the RAMP GEN module and call the ramp generator macro
// ------------------------------------------------------------------------------
rg1.Freq = rc1.SetpointValue;
RG_MACRO(rg1)
// ------------------------------------------------------------------------------
// Connect inputs of the INV_PARK module and call the inverse park trans. macro
// ------------------------------------------------------------------------------
ipark1.Ds = VdTesting;
ipark1.Qs = VqTesting;
ipark1.Sine=_IQsinPU(rg1.Out);
ipark1.Cosine=_IQcosPU(rg1.Out);
IPARK_MACRO(ipark1)
// ------------------------------------------------------------------------------
// Connect inputs of the SVGEN_DQ module and call the space-vector gen. macro
// ------------------------------------------------------------------------------
svgen_dq1.Ualpha = ipark1.Alpha;
svgen_dq1.Ubeta = ipark1.Beta;
SVGEN_MACRO(svgen_dq1)
// ------------------------------------------------------------------------------
// Connect inputs of the PWM_DRV module and call the PWM signal generation macro
// ------------------------------------------------------------------------------
pwm1.MfuncC1 = _IQtoQ15(svgen_dq1.Ta);
pwm1.MfuncC2 = _IQtoQ15(svgen_dq1.Tb);
pwm1.MfuncC3 = _IQtoQ15(svgen_dq1.Tc);
PWM_MACRO(pwm1) // Calculate the new PWM compare values
EPwm1Regs.CMPA.half.CMPA=pwm1.PWM1out; // PWM 1A - PhaseA
EPwm2Regs.CMPA.half.CMPA=pwm1.PWM2out; // PWM 2A - PhaseB
EPwm3Regs.CMPA.half.CMPA=pwm1.PWM3out; // PWM 3A - PhaseC
// ------------------------------------------------------------------------------
// Connect inputs of the PWMDAC module
// ------------------------------------------------------------------------------
PwmDacCh1 = _IQtoQ15(svgen_dq1.Ta);
PwmDacCh2 = _IQtoQ15(svgen_dq1.Tb);
PwmDacCh3 = _IQtoQ15(svgen_dq1.Tc);
PwmDacCh4 = _IQtoQ15(svgen_dq1.Tb-svgen_dq1.Tc);
// ------------------------------------------------------------------------------
// Connect inputs of the DATALOG module
// ------------------------------------------------------------------------------
DlogCh1 = _IQtoQ15(svgen_dq1.Ta);
DlogCh2 = _IQtoQ15(svgen_dq1.Tb);
DlogCh3 = _IQtoQ15(svgen_dq1.Tc);
DlogCh4 = _IQtoQ15(svgen_dq1.Tb-svgen_dq1.Tc);
#endif // (BUILDLEVEL==LEVEL1)
// =============================== LEVEL 2 ======================================
// Level 2 verifies the analog-to-digital conversion, offset compensation,
// clarke/park transformations (CLARKE/PARK), phase voltage calculations
// ==============================================================================
#if (BUILDLEVEL==LEVEL2)
// ------------------------------------------------------------------------------
// Connect inputs of the RMP module and call the ramp control macro
// ------------------------------------------------------------------------------
rc1.TargetValue = SpeedRef;
RC_MACRO(rc1)
// ------------------------------------------------------------------------------
// Connect inputs of the RAMP GEN module and call the ramp generator macro
// ------------------------------------------------------------------------------
rg1.Freq = rc1.SetpointValue;
RG_MACRO(rg1)
// ------------------------------------------------------------------------------
// Measure phase currents, subtract the offset and normalize from (-0.5,+0.5) to (-1,+1).
// Connect inputs of the CLARKE module and call the clarke transformation macro
// ------------------------------------------------------------------------------
#ifdef DSP2803x_DEVICE_H
// clarke1.As=-(_IQ15toIQ((AdcResult.ADCRESULT1<<3)-cal_offset_A)<<1);
// clarke1.Bs=-(_IQ15toIQ((AdcResult.ADCRESULT2<<3)-cal_offset_B)<<1);
clarke1.As=(_IQ15toIQ((AdcResult.ADCRESULT1<<3)-cal_offset_A)<<1);
clarke1.Bs=(_IQ15toIQ((AdcResult.ADCRESULT2<<3)-cal_offset_B)<<1);
#endif
CLARKE_MACRO(clarke1)
// ------------------------------------------------------------------------------
// Connect inputs of the PARK module and call the park trans. macro
// ------------------------------------------------------------------------------
park1.Alpha = clarke1.Alpha;
park1.Beta = clarke1.Beta;
park1.Angle = rg1.Out;
park1.Sine = _IQsinPU(park1.Angle);
park1.Cosine = _IQcosPU(park1.Angle);
PARK_MACRO(park1)
// ------------------------------------------------------------------------------
// Connect inputs of the INV_PARK module and call the inverse park trans. macro
// ------------------------------------------------------------------------------
ipark1.Ds = VdTesting;
ipark1.Qs = VqTesting;
ipark1.Sine=park1.Sine;
ipark1.Cosine=park1.Cosine;
IPARK_MACRO(ipark1)
// ------------------------------------------------------------------------------
// Connect inputs of the VOLT_CALC module and call the phase voltage calc. macro
// ------------------------------------------------------------------------------
#ifdef DSP2803x_DEVICE_H
volt1.DcBusVolt = _IQ15toIQ((AdcResult.ADCRESULT3<<3)); // DC Bus voltage meas.
#endif
volt1.MfuncV1 = svgen_dq1.Ta;
volt1.MfuncV2 = svgen_dq1.Tb;
volt1.MfuncV3 = svgen_dq1.Tc;
VOLT_MACRO(volt1)
// ------------------------------------------------------------------------------
// Connect inputs of the SVGEN_DQ module and call the space-vector gen. macro
// ------------------------------------------------------------------------------
svgen_dq1.Ualpha = ipark1.Alpha;
svgen_dq1.Ubeta = ipark1.Beta;
SVGEN_MACRO(svgen_dq1)
// ------------------------------------------------------------------------------
// Connect inputs of the PWM_DRV module and call the PWM signal generation macro
// ------------------------------------------------------------------------------
pwm1.MfuncC1 = _IQtoQ15(svgen_dq1.Ta);
pwm1.MfuncC2 = _IQtoQ15(svgen_dq1.Tb);
pwm1.MfuncC3 = _IQtoQ15(svgen_dq1.Tc);
PWM_MACRO(pwm1) // Calculate the new PWM compare values
EPwm1Regs.CMPA.half.CMPA=pwm1.PWM1out; // PWM 1A - PhaseA
EPwm2Regs.CMPA.half.CMPA=pwm1.PWM2out; // PWM 2A - PhaseB
EPwm3Regs.CMPA.half.CMPA=pwm1.PWM3out; // PWM 3A - PhaseC
// ------------------------------------------------------------------------------
// Connect inputs of the PWCCMDAC module
// ------------------------------------------------------------------------------
PwmDacCh1 = _IQtoQ15(volt1.Valpha);
PwmDacCh2 = _IQtoQ15(clarke1.Alpha);
PwmDacCh3 = _IQtoQ15(volt1.Vbeta );
PwmDacCh4 = _IQtoQ15(clarke1.Beta);
// ------------------------------------------------------------------------------
// Connect inputs of the DATALOG module
// ------------------------------------------------------------------------------
DlogCh1 = _IQtoQ15(volt1.Valpha);
DlogCh2 = _IQtoQ15(clarke1.Alpha);
DlogCh3 = _IQtoQ15(volt1.Vbeta );
DlogCh4 = _IQtoQ15(clarke1.Beta);
#endif // (BUILDLEVEL==LEVEL2)
// =============================== LEVEL 3 ======================================
// Level 3 auto-calculates the current sensor offset calibration
// ==============================================================================
#if (BUILDLEVEL==LEVEL3)
_iq IAfdbk;
_iq IBfdbk;
// ------------------------------------------------------------------------------
// Measure phase currents, subtract the offset and normalize from (-0.5,+0.5) to (-1,+1).
// ------------------------------------------------------------------------------
#ifdef DSP2803x_DEVICE_H
IAfdbk=_IQ15toIQ((AdcResult.ADCRESULT1<<3)-cal_offset_A)<<1;
IBfdbk=_IQ15toIQ((AdcResult.ADCRESULT2<<3)-cal_offset_B)<<1;
#endif
// ------------------------------------------------------------------------------
// LPF to average the calibration offsets
// Use the offsets calculated here to initialize cal_offset_A and cal_offset_B
// so that they are used for the remaining build levels
// ------------------------------------------------------------------------------
cal_offset_A = _IQ15mpy(cal_filt_gain,_IQtoIQ15(IAfdbk)) + cal_offset_A;
cal_offset_B = _IQ15mpy(cal_filt_gain,_IQtoIQ15(IBfdbk)) + cal_offset_B;
// ------------------------------------------------------------------------------
// force all PWMs to 0% duty cycle
// ------------------------------------------------------------------------------
EPwm1Regs.CMPA.half.CMPA=pwm1.PeriodMax; // PWM 1A - PhaseA
EPwm2Regs.CMPA.half.CMPA=pwm1.PeriodMax; // PWM 2A - PhaseB
EPwm3Regs.CMPA.half.CMPA=pwm1.PeriodMax; // PWM 3A - PhaseC
// ------------------------------------------------------------------------------
// Connect inputs of the PWMDAC module
// ------------------------------------------------------------------------------
PwmDacCh1 = _IQtoQ15(IAfdbk);
PwmDacCh2 = _IQtoQ15(IBfdbk);
PwmDacCh2 = _IQtoQ15(cal_offset_A);
PwmDacCh3 = _IQtoQ15(cal_offset_B);
// ------------------------------------------------------------------------------
// Connect inputs of the DATALOG module
// ------------------------------------------------------------------------------
DlogCh1 = _IQtoQ15(IAfdbk);
DlogCh2 = _IQtoQ15(IBfdbk);
DlogCh3 = _IQtoQ15(cal_offset_A);
DlogCh4 = _IQtoQ15(cal_offset_B);
#endif // (BUILDLEVEL==LEVEL3)
// =============================== LEVEL 4 ======================================
// Level 4 verifies the dq-axis current regulation performed by PID and speed
// measurement modules
// ==============================================================================
// lsw=0: lock the rotor of the motor
// lsw=1: close the current loop
#if (BUILDLEVEL==LEVEL4)
// ------------------------------------------------------------------------------
// Connect inputs of the RMP module and call the ramp control macro
// ------------------------------------------------------------------------------
if(lsw==0) rc1.TargetValue = 0;
else rc1.TargetValue = SpeedRef;
RC_MACRO(rc1)
// ------------------------------------------------------------------------------
// Connect inputs of the RAMP GEN module and call the ramp generator macro
// ------------------------------------------------------------------------------
rg1.Freq = rc1.SetpointValue;
RG_MACRO(rg1)
// ------------------------------------------------------------------------------
// Measure phase currents, subtract the offset and normalize from (-0.5,+0.5) to (-1,+1).
// Connect inputs of the CLARKE module and call the clarke transformation macro
// ------------------------------------------------------------------------------
#ifdef DSP2803x_DEVICE_H
// clarke1.As=-(_IQ15toIQ((AdcResult.ADCRESULT1<<3)-cal_offset_A)<<1);
// clarke1.Bs=-(_IQ15toIQ((AdcResult.ADCRESULT2<<3)-cal_offset_B)<<1);
clarke1.As=(_IQ15toIQ((AdcResult.ADCRESULT1<<3)-cal_offset_A)<<1);
clarke1.Bs=(_IQ15toIQ((AdcResult.ADCRESULT2<<3)-cal_offset_B)<<1);
#endif
CLARKE_MACRO(clarke1)
// ------------------------------------------------------------------------------
// Connect inputs of the PARK module and call the park trans. macro
// ------------------------------------------------------------------------------
park1.Alpha = clarke1.Alpha;
park1.Beta = clarke1.Beta;
if(lsw==0) park1.Angle = 0;
else if(lsw==1) park1.Angle = rg1.Out;
park1.Sine = _IQsinPU(park1.Angle);
park1.Cosine = _IQcosPU(park1.Angle);
PARK_MACRO(park1)
// ------------------------------------------------------------------------------
// Connect inputs of the PID_GRANDO_CONTROLLER module and call the PID IQ controller macro
// ------------------------------------------------------------------------------
if(lsw==0) pid1_iq.term.Ref = 0;
else if(lsw==1) pid1_iq.term.Ref = IqRef;
pid1_iq.term.Fbk = park1.Qs;
PID_GR_MACRO(pid1_iq)
// ------------------------------------------------------------------------------
// Connect inputs of the PID_GRANDO_CONTROLLER module and call the PID ID controller macro
// ------------------------------------------------------------------------------
if(lsw==0) pid1_id.term.Ref = _IQ(0.05);
else pid1_id.term.Ref = IdRef;
pid1_id.term.Fbk = park1.Ds;
PID_GR_MACRO(pid1_id)
// ------------------------------------------------------------------------------
// Connect inputs of the INV_PARK module and call the inverse park trans. macro
// ------------------------------------------------------------------------------
ipark1.Ds = pid1_id.term.Out;
ipark1.Qs = pid1_iq.term.Out ;
ipark1.Sine = park1.Sine;
ipark1.Cosine = park1.Cosine;
IPARK_MACRO(ipark1)
// ------------------------------------------------------------------------------
// Call the QEP calculation module
// ------------------------------------------------------------------------------
QEP_MACRO(qep1);
// ------------------------------------------------------------------------------
// Connect inputs of the SPEED_FR module and call the speed calculation macro
// ------------------------------------------------------------------------------
speed1.ElecTheta = qep1.ElecTheta;
speed1.DirectionQep = (int32)(qep1.DirectionQep);
SPEED_FR_MACRO(speed1)
// ------------------------------------------------------------------------------
// Connect inputs of the VOLT_CALC module and call the phase voltage calc. macro
// ------------------------------------------------------------------------------
#ifdef DSP2803x_DEVICE_H
volt1.DcBusVolt = _IQ15toIQ((AdcResult.ADCRESULT3<<3)); // DC Bus voltage meas.