forked from CS501ProSCE/DroneProject
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLearn.py
148 lines (108 loc) · 4 KB
/
Learn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
"""
CS501 Group 16
Fall 2018
Modified/adapted from code baseline by Thomas Shaw
This module imports the data and executes the algorithms.
Re-used code from: https://github.com/markdregan/K-Nearest-Neighbors-with-Dynamic-Time-Warping
credit: Mark Dregan
*Some modifications made for implementation in Python3 and custom data input, plotting
"""
import matplotlib.pyplot as plt
import numpy as np
from knndtw import KnnDtw
from knndtw import ProgressBar
from k_fold_cv import k_fold_cross_val
dataset = 'Data6/'
dataparam = 'mavlink_attitude_t_roll angle'
n_neighbors = 1
max_warping_window=100
plotdata = False
#get time for computatoin length
timestartalg = datetime.datetime.now()
trainingdatafile = dataset + 'train_' + dataparam + '.txt'
traininglabelfile = dataset + 'train_labels.txt'
testdatafile = dataset + 'test_' + dataparam + '.txt'
testlabelfile = dataset + 'test_labels.txt'
# Import the HAR dataset
x_train_file = open(trainingdatafile, 'r')
y_train_file = open(traininglabelfile, 'r')
x_test_file = open(testdatafile, 'r')
y_test_file = open(testlabelfile, 'r')
# Create empty lists
x_train = []
y_train = []
x_test = []
y_test = []
# Mapping table for classes
labels = {1:'Hover', 2:'Impact (Front Left)', 3:'Impact (Front Right)', 4:'Impact (Back Left)', 5:'Impact (Back Right)',
6:'Gust (from Left)', 7:'Gust (from Right)', 8: 'Gust (from front)' }
# Loop through datasets
for x in x_train_file:
x_train.append([float(ts) for ts in x.split()])
for y in y_train_file:
y_train.append(int(y.rstrip('\n')))
for x in x_test_file:
x_test.append([float(ts) for ts in x.split()])
for y in y_test_file:
y_test.append(int(y.rstrip('\n')))
#close data files
x_train_file.close()
y_train_file.close()
x_test_file.close()
y_test_file.close()
# Convert to numpy for efficiency
x_train = np.array(x_train)
y_train = np.array(y_train)
x_test = np.array(x_test)
y_test = np.array(y_test)
#plot train data
if(plotdata):
plt.figure(figsize=(11,7))
colors = ['#D62728','#2C9F2C','#FD7F23','#1F77B4','#9467BD',
'#8C564A','#7F7F7F','#1FBECF','#E377C2','#BCBD27',
'#D62728','#2C9F2C']
for i, r in enumerate([0,1,2,3,5,6,7,8,9,10,11,12]):
plt.subplot(7,2,i+1)
plt.plot(x_train[r], label=labels[y_train[r]], color=colors[i], linewidth=2)
plt.xlabel('Samples @50Hz')
plt.legend(loc='upper left')
plt.tight_layout()
#Plot Test data
if(plotdata):
plt.figure(figsize=(11,7))
colors = ['#D62728','#2C9F2C','#FD7F23','#1F77B4','#9467BD',
'#8C564A','#7F7F7F','#1FBECF','#E377C2','#BCBD27']
for i, r in enumerate([0,1,2,3,4,5,6,7,8,9]):
plt.subplot(5,2,i+1)
plt.plot(x_test[r], label=labels[y_test[r]], color=colors[i], linewidth=2)
plt.xlabel('Samples @50Hz')
plt.legend(loc='upper left')
plt.tight_layout()
#Analyze dataset
m = KnnDtw(n_neighbors, max_warping_window)
m.fit(x_train,y_train)
label, proba = m.predict(x_test)
#Classification report
from sklearn.metrics import classification_report, confusion_matrix
print(classification_report(label, y_test,
target_names=[l for l in labels.values()]))
#Confusion Matrix
conf_mat = confusion_matrix(label, y_test)
fig = plt.figure(figsize=(8,8))
width = np.shape(conf_mat)[1]
height = np.shape(conf_mat)[0]
res = plt.imshow(np.array(conf_mat), cmap=plt.cm.summer, interpolation='nearest')
for i, row in enumerate(conf_mat):
for j, c in enumerate(row):
if c>0:
plt.text(j-.2, i+.1, c, fontsize=16)
#cb = fig.colorbar(res)
plt.title('Confusion Matrix for ' + dataparam)
plt.xlabel('Data')
plt.ylabel('ML Identification')
_ = plt.xticks(range(8), [l for l in labels.values()], rotation=90)
_ = plt.yticks(range(8), [l for l in labels.values()])
#get end time for computatoin length and compute total run time
timeendalg = datetime.datetime.now()
runtime = timeendalg - timestartalg
print('total algorithm computation time was %f seconds' % (runtime.total_seconds()))