-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
125 lines (95 loc) · 4.48 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import json
import argparse
import torch
from torch import nn
from torchvision import transforms
from torch.utils.data import DataLoader
from utils import create_df
from train import *
from models import SegmentationModel
from plots import *
from dataset import *
def load_config(config_file):
"""Load configurations from JSON file."""
with open(config_file, 'r') as f:
config = json.load(f)
return config
def setup_transforms(config):
"""Setup transforms based on configurations."""
transforms_config = config['transforms']
mean = transforms_config['mean']
std = transforms_config['std']
t_train = transforms.Compose([
transforms.ToTensor(),
transforms.Resize(tuple(transforms_config['train']['resize'])),
transforms.RandomHorizontalFlip(p=transforms_config['train']['random_horizontal_flip']),
transforms.RandomVerticalFlip(p=transforms_config['train']['random_vertical_flip'])
])
t_val = transforms.Compose([
transforms.ToTensor(),
transforms.Resize(tuple(transforms_config['val']['resize'])),
transforms.RandomHorizontalFlip(p=transforms_config['val']['random_horizontal_flip']) #set as false
])
return mean, std, t_train, t_val
def setup_datasets_and_loaders(config, mean, std, t_train, t_val):
"""Setup datasets and dataloaders based on configurations."""
paths = config['paths']
training_config = config['training']
batch_size = training_config['batch_size']
df_train = create_df(paths['IMAGE_PATH_train'])
df_val = create_df(paths['IMAGE_PATH_val'])
normalize = transforms.Normalize(mean=mean, std=std)
data_transform = transforms.Compose([t_train, normalize])
t_val_transform = transforms.Compose([t_val, normalize])
train_set = BalancedCardDataset(paths['IMAGE_PATH_train'], paths['MASK_PATH_train'], df_train, mean, std, data_transform, for_mask=t_train, patch=False)
val_set = BalancedCardDataset(paths['IMAGE_PATH_val'], paths['MASK_PATH_val'], df_val, mean, std, t_val_transform,for_mask= t_val, patch=False)
train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=True)
val_loader = DataLoader(val_set, batch_size=batch_size, shuffle=False)
return train_loader, val_loader
def load_model(config):
"""Create Model"""
model_config = config['model']
return SegmentationModel(
model_name=model_config['model_name'],
encoder_name=model_config['encoder_name'],
classes=model_config['classes'],
activation=model_config['activation'],
encoder_depth=model_config['encoder_depth'],
decoder_channels=model_config['decoder_channels']
)
def setup_training(config,length):
"""Setup model, criterion, optimizer, and scheduler based on configurations."""
model = load_model(config) #add if pretrained model path present
if len(config['model']['resume_path']):
print("Loading model from {}".format(config['model']['resume_path']))
model = torch.load(config['model']['resume_path'])
print(model)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.AdamW(model.parameters(), lr=config['training']['max_lr'],
weight_decay=config['training']['weight_decay'])
sched = torch.optim.lr_scheduler.OneCycleLR(optimizer, config['training']['max_lr'],
epochs=config['training']['epochs'],
steps_per_epoch=length)
return model, criterion, optimizer, sched
def main():
# Load configurations from JSON file
parser = argparse.ArgumentParser(description='Process configuration file.')
parser.add_argument('config_file', type=str, help='Path to JSON file')
# Parse the arguments
args = parser.parse_args()
# Load configuration from the specified file
config = load_config(args.config_file)
# Setup transforms
mean, std, t_train, t_val = setup_transforms(config)
# Setup datasets and dataloaders
train_loader, val_loader = setup_datasets_and_loaders(config, mean, std, t_train, t_val)
# Setup model, criterion, optimizer, and scheduler
model, criterion, optimizer, sched = setup_training(config,len(train_loader))
# Train model
history = fit_model(config['training'], model, train_loader, val_loader, criterion, optimizer, sched)
# Plot results
plot_loss(history)
plot_score(history)
plot_acc(history)
if __name__ == "__main__":
main()