-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtorchsummary.py
132 lines (111 loc) · 5.59 KB
/
torchsummary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import torch
import torch.nn as nn
from torch.autograd import Variable
from collections import OrderedDict
import numpy as np
def summary(model, input_size, batch_size=-1, device=torch.device('cpu:0'), dtypes=None):
result, params_info = summary_string(
model, input_size, batch_size, device, dtypes)
print(result)
return params_info
def summary_string(model, input_size, batch_size=-1, device=torch.device('cpu:0'), dtypes=None):
if dtypes == None:
dtypes = [torch.FloatTensor]*len(input_size)
summary_str = ''
def register_hook(module):
def hook(module, input, output):
class_name = str(module.__class__).split(".")[-1].split("'")[0]
module_idx = len(summary)
m_key = "%s-%i" % (class_name, module_idx + 1)
summary[m_key] = OrderedDict()
summary[m_key]["input_shape"] = list(input[0].size())
summary[m_key]["input_shape"][0] = batch_size
if isinstance(output, (list, tuple)):
summary[m_key]["output_shape"] = [
[-1] + list(o.size())[1:] for o in output
]
else:
summary[m_key]["output_shape"] = list(output.size())
summary[m_key]["output_shape"][0] = batch_size
params = 0
if hasattr(module, "weight") and hasattr(module.weight, "size"):
params += torch.prod(torch.LongTensor(list(module.weight.size())))
summary[m_key]["trainable"] = module.weight.requires_grad
if hasattr(module, "bias") and hasattr(module.bias, "size"):
params += torch.prod(torch.LongTensor(list(module.bias.size())))
if hasattr(module, "w_mu") and hasattr(module.w_mu, "size"):
params += torch.prod(torch.LongTensor(list(module.w_mu.size())))
summary[m_key]["trainable"] = module.w_mu.requires_grad
if hasattr(module, "w_rho") and hasattr(module.w_rho, "size"):
params += torch.prod(torch.LongTensor(list(module.w_rho.size())))
summary[m_key]["trainable"] = module.w_rho.requires_grad
if hasattr(module, "b_mu") and hasattr(module.b_mu, "size"):
params += torch.prod(torch.LongTensor(list(module.b_mu.size())))
summary[m_key]["trainable"] = module.b_mu.requires_grad
if hasattr(module, "b_rho") and hasattr(module.b_rho, "size"):
params += torch.prod(torch.LongTensor(list(module.b_rho.size())))
summary[m_key]["trainable"] = module.b_rho.requires_grad
summary[m_key]["nb_params"] = params
if (
not isinstance(module, nn.Sequential)
and not isinstance(module, nn.ModuleList)
):
hooks.append(module.register_forward_hook(hook))
# multiple inputs to the network
if isinstance(input_size, tuple):
input_size = [input_size]
# batch_size of 2 for batchnorm
x = [torch.rand(2, *in_size).type(dtype).to(device=device)
for in_size, dtype in zip(input_size, dtypes)]
# create properties
summary = OrderedDict()
hooks = []
# register hook
model.apply(register_hook)
# make a forward pass
# print(x.shape)
model(*x)
# remove these hooks
for h in hooks:
h.remove()
summary_str += "----------------------------------------------------------------" + "\n"
line_new = "{:>20} {:>25} {:>15}".format(
"Layer (type)", "Output Shape", "Param #")
summary_str += line_new + "\n"
summary_str += "================================================================" + "\n"
total_params = 0
total_output = 0
trainable_params = 0
for layer in summary:
# input_shape, output_shape, trainable, nb_params
line_new = "{:>20} {:>25} {:>15}".format(
layer,
str(summary[layer]["output_shape"]),
"{0:,}".format(summary[layer]["nb_params"]),
)
total_params += summary[layer]["nb_params"]
total_output += np.prod(summary[layer]["output_shape"])
if "trainable" in summary[layer]:
if summary[layer]["trainable"] == True:
trainable_params += summary[layer]["nb_params"]
summary_str += line_new + "\n"
# assume 4 bytes/number (float on cuda).
total_input_size = abs(np.prod(sum(input_size, ()))
* batch_size * 4. / (1024 ** 2.))
total_output_size = abs(2. * total_output * 4. /
(1024 ** 2.)) # x2 for gradients
total_params_size = abs(total_params * 4. / (1024 ** 2.))
total_size = total_params_size + total_output_size + total_input_size
summary_str += "================================================================" + "\n"
summary_str += "Total params: {0:,}".format(total_params) + "\n"
summary_str += "Trainable params: {0:,}".format(trainable_params) + "\n"
summary_str += "Non-trainable params: {0:,}".format(total_params -
trainable_params) + "\n"
summary_str += "----------------------------------------------------------------" + "\n"
summary_str += "Input size (MB): %0.2f" % total_input_size + "\n"
summary_str += "Forward/backward pass size (MB): %0.2f" % total_output_size + "\n"
summary_str += "Params size (MB): %0.2f" % total_params_size + "\n"
summary_str += "Estimated Total Size (MB): %0.2f" % total_size + "\n"
summary_str += "----------------------------------------------------------------" + "\n"
# return summary
return summary_str, (total_params, trainable_params)