-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
148 lines (105 loc) · 5.31 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import torch
from torch.utils.data import Dataset
import torchvision.transforms as transforms
from torch.utils.data import Subset
from torchsummary import summary
import numpy as np
import csv
from PIL import Image
from models import VanillaLeNet, CNSteerableLeNet, DNSteerableLeNet, DNRestrictedLeNet
from utils import *
#from FRDEEP import FRDEEPF
from MiraBest import MBFRConfident
#from MingoLoTSS import MLFR
# -----------------------------------------------------------------------------
# -----------------------------------------------------------------------------
# extract information from config file:
vars = parse_args()
config_dict, config = parse_config(vars['config'])
batch_size = config_dict['training']['batch_size']
frac_val = config_dict['training']['frac_val']
epochs = config_dict['training']['epochs']
imsize = config_dict['training']['imsize']
nclass = config_dict['training']['num_classes']
learning_rate = torch.tensor(config_dict['training']['lr0'])
weight_decay = torch.tensor(config_dict['training']['decay'])
early_stopping = config_dict['model']['early_stopping']
quiet = config_dict['model']['quiet']
nrot = config_dict['model']['nrot']
csvfile = config_dict['output']['csvfile']
modfile = config_dict['output']['modfile']
config = vars['config'].split('/')[-1][:-4]
# -----------------------------------------------------------------------------
# -----------------------------------------------------------------------------
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# -----------------------------------------------------------------------------
# Data loading:
crop = transforms.CenterCrop(imsize)
pad = transforms.Pad((0, 0, 1, 1), fill=0)
totensor = transforms.ToTensor()
normalise= transforms.Normalize((config_dict['data']['datamean'],), (config_dict['data']['datastd'],))
transform = transforms.Compose([
crop,
pad,
transforms.RandomRotation(360, resample=Image.BILINEAR, expand=False),
totensor,
normalise,
])
train_data = locals()[config_dict['data']['dataset']](config_dict['data']['datadir'], train=True, download=True, transform=transform)
if frac_val>0.:
dataset_size = len(train_data)
nval = int(frac_val*dataset_size)
indices = list(range(dataset_size))
train_indices, val_indices = indices[nval:], indices[:nval]
train_sampler = Subset(train_data, train_indices)
valid_sampler = Subset(train_data, val_indices)
train_loader = torch.utils.data.DataLoader(train_sampler, batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(valid_sampler, batch_size=batch_size, shuffle=True)
else:
# setting frac_val to zero will use the test set for validation
train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=True)
test_data = locals()[config_dict['data']['dataset']](config_dict['data']['datadir'], train=False, download=True, transform=transform)
test_loader = torch.utils.data.DataLoader(valid_sampler, batch_size=batch_size, shuffle=True)
# -----------------------------------------------------------------------------
model = locals()[config_dict['model']['base']](1, nclass, imsize+1, kernel_size=5, N=nrot).to(device)
if not quiet:
summary(model, (1, imsize+1, imsize+1))
# -----------------------------------------------------------------------------
loss_function = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer=optimizer, patience=2, factor=0.9)
# -----------------------------------------------------------------------------
# training loop:
rows = ['epoch', 'train_loss', 'test_loss', 'test_accuracy']
with open(csvfile, 'w+', newline="") as f_out:
writer = csv.writer(f_out, delimiter=',')
writer.writerow(rows)
_bestacc = 0.
for epoch in range(epochs): # loop over the dataset multiple times
train_loss = train(model, train_loader, optimizer, device)
test_loss, accuracy = test(model, test_loader, device)
scheduler.step(test_loss)
# check early stopping criteria:
if early_stopping and accuracy>_bestacc:
_bestacc = accuracy
torch.save(model.state_dict(), modfile)
best_acc = accuracy
best_epoch = epoch
# create output row:
_results = [epoch, train_loss, test_loss, accuracy]
with open(csvfile, 'a', newline="") as f_out:
writer = csv.writer(f_out, delimiter=',')
writer.writerow(_results)
if not quiet:
print('Epoch: {}, Validation Loss: {:4f}, Validation Accuracy: {:4f}'.format(epoch, test_loss, accuracy))
print('Current learning rate is: {}'.format(optimizer.param_groups[0]['lr']))
print("Final validation error: ",100.*(1 - accuracy))
if early_stopping:
print("Best validation error: ",100.*(1 - best_acc)," @ epoch: "+str(best_epoch))
# -----------------------------------------------------------------------------
# create outputs:
if not early_stopping:
torch.save(model.state_dict(), modfile)
# -----------------------------------------------------------------------------
# -----------------------------------------------------------------------------
# END