-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrcada_eemd_scn.m
290 lines (265 loc) · 8.87 KB
/
rcada_eemd_scn.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
function [C,Cs] = rcada_eemd_scn(Y, NoiseLevel, NE, TNM, ines, varargin)
%---------------------------------------------------------------
% INPUT :
% Y : input signal
% NoiseLevel : level of added noise
% NE : number of ensemble
% TNM : number of required imf; if it is less than zero, then automatically determine the number
% ines: matrix of ensemble intrinsic mode noises, the code produce
% ines automatically if ines=[]
%-------------Additional Input Properties-----------------------------------------
%
% toFlip : 0=> Original EEMD, References[2] ; 1=> Add anti-phase noise into signal, the way is the same as CEEMD, References[3]
% numIteration : number of sifting iteration
% typeSpline : 1=> clamped spline; 2=> not a knot spline;
% toModify : 0=> None ; 1=> Apply modified linear extrapolation to boundary ; 2 => Mirror Boundary
% randType : 1=> uniformly distributed white noise; 2=> gaussian white noise
% seedNo : random seed used for white noise; The value of seed must be an integer between 0 and 2^32 - 1
% checkSignal : 1=> verify if input signal had NaN or Infinity elements; 0=> Not verify input signal
%
% OUTPUT :
% allmode : returned imf
%
% References
% [1] N. E. Huang, Z. Shen, S. R. Long, M. L. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu,
% "The Empirical Mode Decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis,"
% Proc. Roy. Soc. London A, Vol. 454, pp. 903¡V995, 1998.
% [2] Z. Wu and N. E. Huang, "Ensemble Empirical Mode Decomposition: A
% Noise-Assisted Data Analysis Method," Advances in Adaptive Data Analysis, vol. 1, pp. 1-41, 2009.
% [3] J. R. Yeh, J. S. Shieh and N. E. Huang, "Complementary ensemble empirical
% mode decomposition: A novel noise enhanced data analysis method,"
% Advances in Adaptive Data Analysis, vol. 2, Issue 2, pp. 135¡V156, 2010.
%
% Original author: Yung-Hung Wang, 2013
% Modified by : Wei-Kuang Liang, Jia-Rong Yeh, Chi-Hung Juan, and Norden Huang. 2017
%
%fprintf('Copyright (C) RCADA, NCU.\n');
%allmode = [];
%verifyCode = 20041017; % For verification of emd
if nargin<5
ines=[];
end
[shiftLevel, Y,NoiseLevel,NE,TNM,toFlip,numIteration,typeSpline,toModifyBC,randType,seedNo,IsInputOkay] = parse_checkProperty(Y, NoiseLevel, NE, TNM, varargin);
if shiftLevel>0
Y2 = spmmhh_resample(Y,2^shiftLevel);
else
Y2=Y;
end
if(~IsInputOkay)
fprintf('ERROR : The process is not executed.\n');
return;
end
TNMs=TNM+shiftLevel;
if (NoiseLevel == 0)
Cs = rcada_emd(Y2, toModifyBC, typeSpline, TNMs, numIteration);
if shiftLevel==0
C=Cs;
else
C=zeros(length(Y),TNM);
pC=spmm_downsample(Cs(:,shiftLevel+1:end),2^shiftLevel);
C(1:size(pC,1),1:size(pC,2))=pC;
if size(pC,1)<size(C,1)
redun=size(C,1)-size(pC,1);
C(size(pC,1)+1:end,:)=repmat(pC(size(pC,1),:),redun,1);
end
end
return;
end
xsize = size(Y2,2);
Ystd = std(Y2);
Cs = zeros(xsize,TNMs);
C = zeros(length(Y),TNM);
%imf = zeros(xsize,TNM);
%savedState = set_seed(seedNo);
if isempty(ines)
rng('default');
savedState = set_seed(seedNo);
ens_imn = zeros(xsize,TNMs,NE);
for iii=1:NE % imn ensemble loop
temp = randn(1,xsize); % std temp is 1
imn = dt_EEMD_D(temp,TNMs,0,1); % EMD,
ni=size(imn,2);
while ni< TNMs % in this algorithm we require the noise should be scale-complete
temp = randn(1,sL); % std temp is 1
imn = dt_EEMD_D(temp,TNMs,0,1); % EMD
ni=size(imn,2);
end
cmn = cum_mx(imn);
sdim=std(cmn,1);
cmn=cmn./repmat(sdim,size(cmn,1),1);
ens_imn(:,1:size(cmn,2),iii)=cmn;
end % iii: ensemble loop
return_seed(savedState);
else
ens_imn=ines(:,:,1:NE);
end
ens_n=permute(ens_imn(:,1,:),[3,1,2]);
if (toFlip)
NE = 2*NE; % YHW0202_2011: flip noise to balance the perturbed noise
end
for iii=1:NE % ensemble loop
if (toFlip)
if (mod(iii,2) ~= 0)
% if (randType == 1) % White Noise
% temp = ((2*rand(1,xsize)-1)*NoiseLevel).*Ystd;
% elseif (randType == 2) % Gaussian Noise
% temp = (randn(1,xsize)*NoiseLevel).*Ystd;
% end
curr_ni=round(0.5*(iii+1));
temp = NoiseLevel*Ystd*ens_n(curr_ni,:);
else % Even number
temp = -temp;
end
else % toFlip = 0
% if (randType == 1)
% temp = (2*rand(1,xsize)-1)*NoiseLevel.*Ystd; % temp is Ystd*[0 1]
% elseif (randType == 2)
% temp = randn(1,xsize)*NoiseLevel.*Ystd; % temp is Ystd*[0 1]
% end
temp = NoiseLevel*Ystd*ens_n(iii,:);
end
xend = Y2 + temp;
Ctmp = rcada_emd(xend, toModifyBC, typeSpline, TNMs, numIteration);
Cs = Cs + Ctmp;
end % iii: ensemble loop
%return_seed(savedState);
Cs=Cs/NE;
if shiftLevel==0
C=Cs;
else
pC=spmm_downsample(Cs(:,shiftLevel+1:end),2^shiftLevel);
C(1:size(pC,1),1:size(pC,2))=pC;
if size(pC,1)<size(C,1)
redun=size(C,1)-size(pC,1);
C(size(pC,1)+1:end,:)=repmat(pC(size(pC,1),:),redun,1);
end
end
end
function savedState = set_seed(seedNo)
% defaultStream = RandStream.getDefaultStream;
defaultStream = RandStream.getGlobalStream;
savedState = defaultStream.State;
% rand('seed',seedNo);
% randn('seed',seedNo);
rng(seedNo);
end
function return_seed(savedState)
RandStream.getGlobalStream.State = savedState;
end
function [shiftLevel,Y, NoiseLevel, NE, TNM, toFlip, numIteration, typeSpline,toModifyBC,randType,seedNo, IsInputOkay] = parse_checkProperty(Y, NoiseLevel, NE, TNM, varargin)
% Default Parameters
toFlip = 1; % Conj EEMD
numIteration = 10; % numIteration = 10
typeSpline = 2;
toModifyBC = 1;
randType = 2;
seedNo = now;
checkSignal = 0;
IsInputOkay = true;
shiftLevel=0;
if(~isempty(varargin{1}))
for iArg = 1 : length(varargin{1})
if(iArg == 1)
shiftLevel = varargin{1}{iArg};
end
if(iArg == 2)
toFlip = varargin{1}{iArg};
if(toFlip ~= 0 && toFlip ~= 1)
fprintf('ERROR : toFlip must be 0 (Off) or 1 (On).\n');
IsInputOkay = false;
return;
end
end
if(iArg ==3)
numIteration = varargin{1}{iArg};
if(numIteration < 1 || (mod(numIteration, 1) ~= 0))
fprintf('ERROR : Number of Iteration must be an integer more than 0.\n');
IsInputOkay = false;
return;
end
end
if(iArg == 4)
typeSpline = varargin{1}{iArg};
if(typeSpline ~= 1 && typeSpline ~= 2 && typeSpline ~= 3)
fprintf('ERROR : typeSpline must be 1 (clamped spline); 2 (not a knot spline).\n');
IsInputOkay = false;
return;
end
end
if(iArg == 5)
toModifyBC = varargin{1}{iArg};
if(toModifyBC ~= 0 && toModifyBC ~= 1 && toModifyBC ~= 2)
fprintf('ERROR : toModifyBC must be 0 (None) ; 1 (modified linear extrapolation); 2 (Mirror Boundary)\n');
IsInputOkay = false;
return;
end
end
if(iArg == 6)
randType = varargin{1}{iArg};
if(randType ~= 1 && randType ~= 2)
fprintf('ERROR : randType must be 1 (uniformly distributed white noise) ; 2 (gaussian white noise).\n');
IsInputOkay = false;
return;
end
end
if(iArg == 7)
seedNo = varargin{1}{iArg};
if(seedNo < 0 || seedNo > 2^32-1 || (mod(seedNo, 1) ~= 0))
fprintf('ERROR : The value of seed must be an integer between 0 and 2^32 - 1. \n');
IsInputOkay = false;
return;
end
end
if(iArg == 8)
checkSignal = varargin{1}{iArg};
if(checkSignal ~= 0 && checkSignal ~= 1)
fprintf('ERROR : Number of checksignal must be 1 (Yes) or 0 (No).\n');
IsInputOkay = false;
return;
end
end
end
end
if(NoiseLevel == 0)
%fprintf('If NoiseLevel is ZERO, EEMD algorithm will be changed to EMD algorithm.\n');
end
if ((NE < 1) || (mod(NE, 1) ~= 0))
fprintf('ERROR : Number of Ensemble must be integer more than 0.\n');
IsInputOkay = false;
return;
end
[m,n] = size(Y);
if(m ~= 1)
if((n ~= 1))
fprintf('ERROR : EMD could not input matrix array !\n');
IsInputOkay = false;
return;
else
Y =Y';
xsize = m;
end
else
xsize = n;
end
if (checkSignal == 1)
if((any(isinf(Y(:)) == 1)) || (any(isnan(Y(:)) == 1)))
fprintf('ERROR : The input signal has NaN or Infinity elements.\n');
IsInputOkay = false;
return;
end
end
if(mod(TNM, 1) ~= 0)
fprintf('ERROR : TNM must be an integer more than 0. \n');
IsInputOkay = false;
return;
end
if (TNM <= 0) % automatic estimating number of imf
TNM=fix(log2(xsize));
end
end
function cmn = cum_mx( imn )
cmn=imn;
for i=1:size(imn,2)
cmn(:,i)=sum(imn(:,i:end),2);
end
end