-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathzeus_J0340_v1.py
640 lines (578 loc) · 21 KB
/
zeus_J0340_v1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
import numpy as np
import glob, os, sys, json
import pickle as perkle
import cloudpickle
from collections import OrderedDict
import zeus
from zeus import ChainManager
import enterprise
from enterprise.pulsar import Pulsar
from enterprise.signals import utils
from enterprise.signals import parameter
from enterprise.signals import white_signals
from enterprise.signals import signal_base
from enterprise.signals import selections
from enterprise.signals import gp_signals
current_path = os.getcwd()
splt_path = current_path.split("/")
# top_path_idx = splt_path.index("nanograv")
# top_path_idx = splt_path.index("akaiser")
top_path_idx = splt_path.index("ark0015")
top_dir = "/".join(splt_path[0 : top_path_idx + 1])
e_e_path = top_dir + "/enterprise_extensions/"
noise_path = top_dir + "/pta_sim/pta_sim"
sys.path.insert(0, noise_path)
sys.path.insert(0, e_e_path)
import enterprise_extensions as e_e
from enterprise_extensions import models
from enterprise_extensions.timing import timing_block
from enterprise_extensions.blocks import channelized_backends
import noise
import argparse
def add_bool_arg(parser, name, help, default):
group = parser.add_mutually_exclusive_group(required=False)
group.add_argument("--" + name, dest=name, action="store_true", help=help)
group.add_argument("--no-" + name, dest=name, action="store_false", help=help)
parser.set_defaults(**{name: default})
parser = argparse.ArgumentParser(description="")
parser.add_argument(
"--psr_name", required=True, type=str, help="name of pulsar used for search"
)
parser.add_argument("--datarelease", required=True, help="What dataset to use")
parser.add_argument("--run_num", required=True, help="Label at end of output file.")
parser.add_argument(
"--tm_prior",
choices=["uniform", "bounded"],
default="uniform",
help="Use either uniform or bounded for ephemeris modeling? (DEFAULT: uniform)",
)
parser.add_argument(
"--ephem", default="DE436", help="Ephemeris option (DEFAULT: DE436)"
)
add_bool_arg(parser, "white_var", "Vary the white noise? (DEFAULT: TRUE)", True)
add_bool_arg(parser, "red_var", "Vary the red noise? (DEFAULT: TRUE)", True)
add_bool_arg(
parser,
"wideband",
"Whether to use wideband timing for DMX parameters. (DEFAULT: FALSE",
False,
)
add_bool_arg(parser, "tm_var", "Whether to vary timing model. (DEFAULT: True)", True)
add_bool_arg(
parser,
"tm_linear",
"Whether to use only the linear timing model. (DEFAULT: FALSE)",
False,
)
add_bool_arg(
parser,
"fit_remaining_pars",
"Whether to use non-linear plus linear timing model variations. (DEFAULT: TRUE)",
True,
)
add_bool_arg(
parser,
"fixed_remaining_pars",
"Whether to use non-linear plus fixed timing model parameters. (DEFAULT: FALSE)",
False,
)
parser.add_argument("--N", default=int(1e6), help="Number of samples (DEFAULT: 1e6)")
add_bool_arg(
parser,
"lin_dmx_jump_fd",
"Whether to use linear timing for DMX, JUMP, and FD parameters. (DEFAULT: FALSE)",
False,
)
add_bool_arg(
parser,
"sample_cos",
"Whether to sample inclination in COSI or SINI. (DEFAULT: FALSE)",
False,
)
add_bool_arg(
parser,
"Ecorr_gp_basis",
"Whether to use the gp_signals or white_signals ECORR. (DEFAULT: FALSE)",
False,
)
add_bool_arg(
parser,
"incTimingModel",
"Whether to include the timing model. (DEFAULT: TRUE)",
True,
)
add_bool_arg(
parser,
"zero_start",
"Whether to start the timing parameters at the parfile value. (DEFAULT: TRUE)",
True,
)
add_bool_arg(
parser,
"global_jump",
"Whether to use a global jump after the initial run to find multimodes. (DEFAULT: FALSE)",
False,
)
add_bool_arg(
parser,
"use_save_point",
"Whether to save every 2000 samples. (DEFAULT: FALSE)",
False,
)
parser.add_argument(
"--num_cores", default=int(1), help="Number of cores to run on (DEFAULT: 1)"
)
args = parser.parse_args()
if not isinstance(args.N, int):
N = int(float(args.N))
else:
N = args.N
if not isinstance(args.num_cores, int):
N_cores = int(float(args.num_cores))
else:
N_cores = args.num_cores
if args.datarelease == "12p5yr":
if args.wideband:
parfile = top_dir + "/{}/wideband/par/{}_NANOGrav_12yv3.wb.gls.par".format(
args.datarelease, args.psr_name
)
timfile = top_dir + "/{}/wideband/tim/{}_NANOGrav_12yv3.wb.tim".format(
args.datarelease, args.psr_name
)
print("Using {} Wideband data".format(args.datarelease))
else:
parfile = top_dir + "/{}/narrowband/par/{}_NANOGrav_12yv3.gls.par".format(
args.datarelease, args.psr_name
)
timfile = top_dir + "/{}/narrowband/tim/{}_NANOGrav_12yv3.tim".format(
args.datarelease, args.psr_name
)
print("Using {} Narrowband data".format(args.datarelease))
elif args.datarelease == "prelim15yr":
parfile = top_dir + "/{}/{}.working.par".format(args.datarelease, args.psr_name)
timfile = top_dir + "/{}/{}.working.tim".format(args.datarelease, args.psr_name)
print("Using {} data".format(args.datarelease))
else:
datadir = top_dir + "/{}".format(args.datarelease)
if args.datarelease == "5yr":
parfiles = sorted(glob.glob(datadir + "/par/*_nltm.par"))
print(parfiles)
else:
parfiles = sorted(glob.glob(datadir + "/par/*.par"))
timfiles = sorted(glob.glob(datadir + "/tim/*.tim"))
parfile = [pfile for pfile in parfiles if args.psr_name in pfile][0]
timfile = [tfile for tfile in timfiles if args.psr_name in tfile][0]
print("Using {} data".format(args.datarelease))
if args.fit_remaining_pars and args.tm_var:
outdir = (
current_path
+ "/{}/zeus_chains/{}/".format(args.psr_name, args.datarelease)
+ args.psr_name
+ "_{}_{}_{}".format(
"_".join(args.tm_prior.split("-")), args.ephem, args.run_num
)
)
else:
outdir = (
current_path
+ "/{}/zeus_chains/{}/".format(args.psr_name, args.datarelease)
+ args.psr_name
+ "_{}_{}_{}".format(
"_".join(args.tm_prior.split("-")), args.ephem, args.run_num
)
)
if not os.path.isdir(outdir):
os.makedirs(outdir, exist_ok=True)
noisedict = {}
if args.datarelease in ["12p5yr", "cfr+19"]:
noisefiles = sorted(glob.glob(top_dir + "/12p5yr/*.json"))
for noisefile in noisefiles:
tmpnoisedict = {}
with open(noisefile, "r") as fin:
tmpnoisedict.update(json.load(fin))
for key in tmpnoisedict.keys():
if key.split("_")[0] == args.psr_name:
noisedict[key] = tmpnoisedict[key]
elif args.datarelease in ["5yr", "9yr", "11yr"]:
noisefiles = sorted(glob.glob(datadir + "/noisefiles/*.txt"))
for noisefile in noisefiles:
tmpnoisedict = {}
tmpnoisedict = noise.get_noise_from_file(noisefile)
for og_key in tmpnoisedict.keys():
split_key = og_key.split("_")
psr_name = split_key[0]
if psr_name == args.psr_name or args.datarelease == "5yr":
if args.datarelease == "5yr":
param = "_".join(split_key[1:])
new_key = "_".join([psr_name, "_".join(param.split("-"))])
noisedict[new_key] = tmpnoisedict[og_key]
else:
noisedict[og_key] = tmpnoisedict[og_key]
else:
noisedict = None
# filter
is_psr = False
if args.psr_name in parfile:
psr = Pulsar(parfile, timfile, ephem=args.ephem, clk=None, drop_t2pulsar=False)
is_psr = True
if not is_psr:
raise ValueError(
"{} does not exist in {} datarelease.".format(args.psr_name, args.datarelease)
)
nltm_params = []
ltm_list = []
fixed_list = []
tm_param_dict = {}
for par in psr.fitpars:
if par == "Offset":
ltm_list.append(par)
elif "DMX" in par and any(
[args.lin_dmx_jump_fd, args.wideband, args.fixed_remaining_pars]
):
if args.fixed_remaining_pars:
fixed_list.append(par)
else:
ltm_list.append(par)
elif "JUMP" in par and any([args.lin_dmx_jump_fd, args.fixed_remaining_pars]):
if args.fixed_remaining_pars:
fixed_list.append(par)
else:
ltm_list.append(par)
elif "FD" in par and any([args.lin_dmx_jump_fd, args.fixed_remaining_pars]):
if args.fixed_remaining_pars:
fixed_list.append(par)
else:
ltm_list.append(par)
elif par == "SINI":
if args.sample_cos:
nltm_params.append("COSI")
if args.datarelease == "5yr":
tm_param_dict["COSI"] = {
"prior_lower_bound": 0.0,
"prior_upper_bound": 1.0,
}
else:
nltm_params.append(par)
if args.datarelease == "5yr":
tm_param_dict[par] = {
"prior_lower_bound": 0.0,
"prior_upper_bound": 1.0,
}
elif par == "PX":
nltm_params.append(par)
if args.datarelease == "5yr":
tm_param_dict[par] = {
"prior_type": "dm_dist_px_prior",
}
elif par == "M2":
nltm_params.append(par)
if args.datarelease == "5yr":
tm_param_dict[par] = {
"prior_lower_bound": 0.0,
"prior_upper_bound": 10.0,
}
elif (
par in ["ELONG", "ELAT", "F0", "F1"]
and args.datarelease == "9yr"
and args.lin_dmx_jump_fd
):
ltm_list.append(par)
else:
nltm_params.append(par)
if par == "PBDOT":
pbdot = np.double(psr.t2pulsar.vals()[psr.t2pulsar.pars().index(par)])
pbdot_sigma = np.double(psr.t2pulsar.errs()[psr.t2pulsar.pars().index(par)])
print("USING PHYSICAL PBDOT. Val: ", pbdot, "Err: ", pbdot_sigma * 1e-12)
lower = pbdot - 500 * pbdot_sigma * 1e-12
upper = pbdot + 500 * pbdot_sigma * 1e-12
tm_param_dict["PBDOT"] = {
"prior_lower_bound": lower,
"prior_upper_bound": upper,
}
elif par == "XDOT":
xdot = np.double(psr.t2pulsar.vals()[psr.t2pulsar.pars().index(par)])
xdot_sigma = np.double(psr.t2pulsar.errs()[psr.t2pulsar.pars().index(par)])
print("USING PHYSICAL XDOT. Val: ", xdot, "Err: ", xdot_sigma * 1e-12)
lower = xdot - 500 * xdot_sigma * 1e-12
upper = xdot + 500 * xdot_sigma * 1e-12
tm_param_dict["XDOT"] = {
"prior_lower_bound": lower,
"prior_upper_bound": upper,
}
if not args.tm_linear and args.tm_var:
print(
"Non-linearly varying these values: ",
nltm_params,
"\n in pulsar ",
args.psr_name,
)
elif args.tm_linear and args.tm_var:
print("Using linear approximation for all timing parameters.")
else:
print("Not varying timing parameters.")
if args.fit_remaining_pars and args.tm_var:
print("Linearly varying these values: ", ltm_list)
if args.fixed_remaining_pars:
print("Fixing these parameters: ", fixed_list)
print("Using ", args.tm_prior, " prior.")
# define selection by observing backend
if args.datarelease == "5yr":
s = timing_block(
psr,
tm_param_list=nltm_params,
ltm_list=ltm_list,
prior_type=args.tm_prior,
prior_sigma=2.0,
prior_lower_bound=-500.0,
prior_upper_bound=500.0,
tm_param_dict=tm_param_dict,
fit_remaining_pars=args.fit_remaining_pars,
)
select = "none"
if select == "backend":
backend = selections.Selection(selections.by_backend)
else:
# define no selection
backend = selections.Selection(selections.no_selection)
# white noise parameters
efac = parameter.Uniform(0.01, 10.0)
# white noise signals
s += white_signals.MeasurementNoise(efac=efac, selection=backend, name=None)
model = s(psr)
# set up PTA
pta = signal_base.PTA([model])
with open(outdir + "/orig_timing_pars.pkl", "wb") as fout:
perkle.dump(psr.tm_params_orig, fout)
else:
if args.tm_var and not args.tm_linear:
s = timing_block(
psr,
tm_param_list=nltm_params,
ltm_list=ltm_list,
prior_type=args.tm_prior,
prior_sigma=2.0,
prior_lower_bound=-500.0,
prior_upper_bound=500.0,
tm_param_dict=tm_param_dict,
fit_remaining_pars=args.fit_remaining_pars,
wideband_kwargs={},
)
# red noise
if args.red_var:
s += red_noise_block(
psd="powerlaw",
prior="uniform",
components=30,
gamma_val=None,
coefficients=False,
select=None,
)
# define selection by observing backend
backend = selections.Selection(selections.by_backend)
# define selection by nanograv backends
backend_ng = selections.Selection(selections.nanograv_backends)
backend_ch = selections.Selection(channelized_backends)
# white noise parameters
efac = parameter.Uniform(0.001, 10.0)
equad = parameter.Uniform(-10.0, -4.0)
ecorr = parameter.Uniform(-8.5, -4.0)
# white noise signals
ef = white_signals.MeasurementNoise(efac=efac, selection=backend, name=None)
eq = white_signals.EquadNoise(log10_equad=equad, selection=backend, name=None)
if args.Ecorr_gp_basis:
ec = gp_signals.EcorrBasisModel(log10_ecorr=ecorr, selection=backend_ch)
else:
ec = white_signals.EcorrKernelNoise(log10_ecorr=ecorr, selection=backend_ch)
# combine signals
s += ef + eq + ec
model = s(psr)
# set up PTA
pta = signal_base.PTA([model])
with open(outdir + "/orig_timing_pars.pkl", "wb") as fout:
perkle.dump(psr.tm_params_orig, fout)
else:
if args.incTimingModel:
# create new attribute for enterprise pulsar object
# UNSURE IF NECESSARY
psr.tm_params_orig = OrderedDict.fromkeys(psr.t2pulsar.pars())
for key in psr.tm_params_orig:
psr.tm_params_orig[key] = (psr.t2pulsar[key].val, psr.t2pulsar[key].err)
s = gp_signals.TimingModel(use_svd=False, normed=True, coefficients=False)
# define selection by observing backend
backend = selections.Selection(selections.by_backend)
# define selection by nanograv backends
backend_ng = selections.Selection(selections.nanograv_backends)
backend_ch = selections.Selection(channelized_backends)
# white noise parameters
efac = parameter.Uniform(0.001, 10.0)
equad = parameter.Uniform(-10.0, -4.0)
ecorr = parameter.Uniform(-8.5, -4.0)
# white noise signals
ef = white_signals.MeasurementNoise(efac=efac, selection=backend, name=None)
eq = white_signals.EquadNoise(log10_equad=equad, selection=backend, name=None)
if args.Ecorr_gp_basis:
ec = gp_signals.EcorrBasisModel(log10_ecorr=ecorr, selection=backend_ch)
else:
ec = white_signals.EcorrKernelNoise(log10_ecorr=ecorr, selection=backend_ch)
# combine signals
if args.incTimingModel:
s += ef + eq + ec
else:
s = ef + eq + ec
model = s(psr)
# set up PTA
pta = signal_base.PTA([model])
np.savetxt(outdir + "/pars.txt", list(map(str, pta.param_names)), fmt="%s")
np.savetxt(
outdir + "/priors.txt",
list(map(lambda x: str(x.__repr__()), pta.params)),
fmt="%s",
)
ndim = len(pta.param_names)
nwalkers = int(3 * ndim)
if nwalkers % 2 != 0:
nwalkers += 1
if args.zero_start:
start = []
for n in range(nwalkers):
x0_list = []
for p in pta.params:
if "timing" in p.name:
if psr.tm_params_orig[p.name.split("_")[-1]][-1] == "normalized":
x0_list.append(np.double(0.0))
else:
x0_list.append(
np.double(psr.tm_params_orig[p.name.split("_")[-1]][0])
)
else:
x0_list.append(p.sample())
start.append(np.asarray(x0_list))
start = np.array(start)
else:
start = np.array(
[
np.concatenate(
[
np.array([p.sample()]) if p.size is None else p.sample()
for p in pta.params
]
)
for n in range(nwalkers)
]
)
nsteps = N
save_point = 2000
nchains = 1
# with open('/gscratch/gwastro/hazboun/nanograv/data/ng11yr_sw_r2_pertub_pta.pkl','rb') as fin:
# pta = cloudpickle.load(fin)
# start = np.array([np.concatenate([np.array([p.sample()]) if p.size is None else p.sample()for p in pta.params]) for n in range(nwalkers)])
def get_lnpost(x):
lnlike = pta.get_lnlikelihood(x)
lnprior = pta.get_lnprior(x)
if not np.isfinite(lnprior):
return -np.inf
if not np.isfinite(lnlike):
return lnprior
return lnlike + lnprior
if args.use_save_point:
taken_samples = 0.0
if N_cores > 1:
with ChainManager(nchains) as cm:
rank = cm.get_rank
while taken_samples < nsteps:
if taken_samples != 0.0:
start = prev_samples[-1]
sampler = zeus.EnsembleSampler(
nwalkers, ndim, get_lnpost, pool=cm.get_pool
)
sampler.run_mcmc(start, save_point)
# chain = sampler.get_chain(flat=True, discard=0.5)
chain_all = sampler.get_chain()
# print(f'Saving {rank} chain')
# np.save(outdir+'/chain_'+str(rank)+'.npy', chain)
# np.save(outdir+'/chain_all_'+str(rank)+'.npy', chain_all)
print(sampler.summary)
print(sampler.act)
if taken_samples == 0.0:
prev_samples = chain_all
else:
prev_samples = np.concatenate((prev_samples, chain_all))
taken_samples += save_point
np.save(outdir + "/chain_" + str(rank) + ".npy", prev_samples)
print("-------------------")
print("samples taken:", taken_samples)
print("-------------------")
else:
while taken_samples < nsteps:
if taken_samples != 0.0:
start = prev_samples[-1]
sampler = zeus.EnsembleSampler(nwalkers, ndim, get_lnpost)
sampler.run_mcmc(start, save_point)
# chain = sampler.get_chain(flat=True, discard=0.5)
chain_all = sampler.get_chain()
# np.save(outdir+'/chain_1.npy', chain)
# np.save(outdir+'/chain_all_1.npy', chain_all)
print(sampler.summary)
print(sampler.act)
if taken_samples == 0.0:
prev_samples = chain_all
else:
prev_samples = np.concatenate((prev_samples, chain_all))
np.save(outdir + "/chain_1.npy", prev_samples)
taken_samples += save_point
print("-------------------")
print("samples taken:", taken_samples)
print("-------------------")
else:
if N_cores > 1:
with ChainManager(nchains) as cm:
rank = cm.get_rank
sampler = zeus.EnsembleSampler(nwalkers, ndim, get_lnpost, pool=cm.get_pool)
sampler.run_mcmc(start, nsteps)
chain = sampler.get_chain(flat=True, discard=0.5)
chain_all = sampler.get_chain()
print(f"Saving {rank} chain")
np.save(outdir + "/chain_" + str(rank) + ".npy", chain)
np.save(outdir + "/chain_all_" + str(rank) + ".npy", chain_all)
print(sampler.summary)
print(sampler.act)
else:
sampler = zeus.EnsembleSampler(nwalkers, ndim, get_lnpost)
sampler.run_mcmc(start, nsteps)
chain = sampler.get_chain(flat=True, discard=0.5)
chain_all = sampler.get_chain()
np.save(outdir + "/chain_1.npy", chain)
np.save(outdir + "/chain_all_1.npy", chain_all)
print(sampler.summary)
print(sampler.act)
if args.global_jump:
# Get the burnin samples
burnin = sampler.get_chain()
# Set the new starting positions of walkers based on their last positions
start = burnin[-1]
# Initialise the Ensemble Sampler using the advanced ``GlobalMove``.
sampler = zeus.EnsembleSampler(
nwalkers, ndim, get_lnpost, moves=zeus.moves.GlobalMove()
)
# Run MCMC
sampler.run_mcmc(start, nsteps)
# Get the samples and combine them with the burnin phase for plotting purposes
samples = sampler.get_chain()
total_samples = np.concatenate((burnin, samples))
print(f"Saving global jump chain")
np.save(outdir + "/global_jump_chain_1.npy", samples)
np.save(outdir + "/global_jump_chain_all_1.npy", total_samples)
print(sampler.summary)
print(sampler.act)
"""
pickled_pta = cloudpickle.dumps(pta)
psampler.sample(
x0,
N,
SCAMweight=30,
AMweight=15,
DEweight=50,
writeHotChains=args.writeHotChains,
hotChain=args.reallyHotChain,
)
"""