-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsw_pta_un.py
339 lines (284 loc) · 10.2 KB
/
sw_pta_un.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
#!/usr/bin/env python
# coding: utf-8
import numpy as np
# import pint.toa as toa
# import pint.models as models
# import pint.fitter as fit
# import pint.residuals as r
import astropy.units as u
import scipy.integrate as spi
import scipy.stats as sps
import enterprise
from enterprise.pulsar import Pulsar
import enterprise.signals.parameter as parameter
from enterprise.signals import utils
from enterprise.signals import signal_base
from enterprise.signals import selections
from enterprise.signals.selections import Selection
from enterprise.signals import white_signals
from enterprise.signals import gp_signals
from enterprise.signals import deterministic_signals
from enterprise import constants as const
import corner, pickle, sys, json, os
from PTMCMCSampler.PTMCMCSampler import PTSampler as ptmcmc
from enterprise_extensions import models, model_utils, sampler
from enterprise_extensions.chromatic import solar_wind as SW
from enterprise_extensions.chromatic import chromatic as chr
from enterprise_extensions.gp_kernels import linear_interp_basis_dm, se_dm_kernel
from astropy import log
import glob
log.setLevel("CRITICAL")
import pta_sim
import pta_sim.bayes
import pta_sim.parse_sim as parse_sim
args = parse_sim.arguments()
import ultranest
import ultranest.stepsampler
if args.pickle == "no_pickle":
if args.use_pint:
parfiles = glob.glob(args.pardir + "*.gls.par")
timfiles = glob.glob(args.timdir + "*.tim")
if len(timfiles) != len(parfiles):
raise ValueError("List of parfiles and timfiles not equal!!!")
psrs = []
for par, tim in zip(parfiles, timfiles):
t = toa.get_TOAs(tim)
m = models.get_model(par)
f = fit.GLSFitter(t, m)
f.fit_toas(maxiter=2)
psr = Pulsar(t, f.model, ephem=args.ephem)
psrs.append(psr)
else:
parfiles = glob.glob(args.pardir + "*.par")
timfiles = glob.glob(args.timdir + "*.tim")
j1713_tempo_par = [
p for p in parfiles if ("J1713+0747" in p) and (".t2." not in p)
][0]
parfiles.remove(j1713_tempo_par)
if len(timfiles) != len(parfiles):
raise ValueError("List of parfiles and timfiles not equal!!!")
for par, tim in zip(parfiles, timfiles):
psr = Pulsar(par, tim, ephem=args.ephem)
psrs.append(psr)
else:
with open(args.pickle, "rb") as fin:
psrs = pickle.load(fin)
psr_names = [p.name for p in psrs]
tmin = np.amin([p.toas.min() for p in psrs])
tmax = np.amax([p.toas.max() for p in psrs])
Tspan = tmax - tmin
noise_json = args.noisepath
with open(noise_json, "r") as f:
noise_dict = json.load(f)
if args.gwb_ul:
prior = "uniform"
else:
prior = "log-uniform"
model = models.white_noise_block(vary=False, inc_ecorr=True)
model += gp_signals.TimingModel(use_svd=False)
model += models.red_noise_block(
psd=args.psd, prior=prior, components=args.nfreqs, gamma_val=None
)
if args.gwb_off:
pass
else:
if args.hd:
orf = "hd"
else:
orf = None
gw = models.common_red_noise_block(
psd=args.psd,
prior=prior,
Tspan=Tspan,
orf=orf,
gamma_val=args.gamma_gw,
name="gw",
)
model += gw
log10_sigma = parameter.Uniform(-10, -4)
log10_ell = parameter.Uniform(1, 4)
dm_basis = linear_interp_basis_dm(dt=15 * 86400)
dm_prior = se_dm_kernel(log10_sigma=log10_sigma, log10_ell=log10_ell)
dm_gp = gp_signals.BasisGP(dm_prior, dm_basis, name="dm_gp")
dm_block = dm_gp
# Make solar wind signals
print("sw_r2p ", args.sw_r2p)
# if isinstance(args.sw_r2p,(float,int)):
# args.sw_r2p = [args.sw_r2p]
if args.sw_r2p_ranges is None:
sw_r2p_ranges = args.sw_r2p
elif len(args.sw_r2p) != len(args.sw_r2p_ranges):
raise ValueError(
"Number of SW powers must match number of prior ranges!! " "Set # nonvarying "
)
else:
sw_r2p_ranges = args.sw_r2p_ranges
for ii, (power, pr_range) in enumerate(zip(args.sw_r2p, sw_r2p_ranges)):
print(type(power), type(pr_range))
if len(power) == 1 and power[0] == 2.0:
print("1 ", power, pr_range)
if len(pr_range) != 1:
n_earth = parameter.Uniform(pr_range[0], pr_range[1])(
"nE_{0}".format(ii + 1)
)
else:
n_earth = SW.ACE_SWEPAM_Parameter()("nE_{0}".format(ii + 1))
deter_sw = SW.solar_wind(n_earth=n_earth)
dm_block += deterministic_signals.Deterministic(
deter_sw, name="sw_{0}".format(ii + 1)
)
elif len(power) == 1:
print("2 ", power, pr_range)
n_earth = parameter.Uniform(pr_range[0], pr_range[1])("nE_{0}".format(ii + 1))
sw_power = parameter.Constant(power[0])("sw_power_{0}".format(ii + 1))
log10_ne = True if pr_range[0] < 0 else False
deter_sw = SW.solar_wind_r_to_p(
n_earth=n_earth, power=sw_power, log10_ne=log10_ne
)
dm_block += deterministic_signals.Deterministic(
deter_sw, name="sw_{0}".format(ii + 1)
)
elif len(power) > 1:
print("3 ", power, pr_range)
n_earth = parameter.Uniform(pr_range[0], pr_range[1])("nE_{0}".format(ii + 1))
sw_power = parameter.Uniform(power[0], power[1])("sw_power_{0}".format(ii + 1))
log10_ne = True if pr_range[0] < 0 else False
deter_sw = SW.solar_wind_r_to_p(
n_earth=n_earth, power=sw_power, log10_ne=log10_ne
)
dm_block += deterministic_signals.Deterministic(
deter_sw, name="sw_{0}".format(ii + 1)
)
if args.bayes_ephem:
eph = deterministic_signals.PhysicalEphemerisSignal(
model="setIII", use_epoch_toas=True
)
model += eph
if args.sw_pta_gp:
@signal_base.function
def solar_wind_perturb(
toas,
freqs,
planetssb,
sunssb,
pos_t,
n_earth_rho=0,
n_mean=5,
nmodes=20,
Tspan=None,
logf=False,
fmin=None,
fmax=None,
modes=None,
):
"""
Construct DM-Solar Model fourier design matrix.
:param toas: vector of time series in seconds
:param planetssb: solar system bayrcenter positions
:param pos_t: pulsar position as 3-vector
:param freqs: radio frequencies of observations [MHz]
:param n_earth_rho: electron density from the solar wind
at 1 AU.
:param n_earth_bins: Number of binned values of n_earth for which to fit or
an array or list of bin edges to use for binned n_Earth values.
In the latter case the first and last edges must encompass all
TOAs and in all cases it must match the size (number of
elements) of log10_n_earth.
:param t_init: Initial time of earliest TOA in entire dataset, including all
pulsar.
:param t_final: Final time of latest TOA in entire dataset, including all
pulsar.
:return dt_DM: DM due to solar wind
"""
if modes is not None:
nmodes = len(modes)
# print(n_earth_rho)
if n_earth_rho.size != 2 * nmodes:
raise ValueError("Length of n_earth_rho must match 2 x nmodes.")
F, Ffreqs = utils.createfourierdesignmatrix_red(
toas,
nmodes=nmodes,
Tspan=Tspan,
logf=logf,
fmin=fmin,
fmax=fmax,
modes=modes,
)
n_Earth = np.einsum("ij,j", F, n_earth_rho) # np.repeat(10**n_earth_rho,2))
theta, R_earth, _, _ = SW.theta_impact(planetssb, sunssb, pos_t)
dm_sol_wind = SW.dm_solar(1.0, theta, R_earth)
dt_sw = n_Earth * dm_sol_wind * 4.148808e3 / freqs**2
return dt_sw
n_earth_rho = parameter.Normal(0, 0.5, size=60)("n_earth_rho")
sw_pert = solar_wind_perturb(n_earth_rho=n_earth_rho, Tspan=Tspan, nmodes=30)
sw_perturb = deterministic_signals.Deterministic(sw_pert, name="sw_perturb")
model += sw_perturb
norm_model = model + dm_block
if args.dm_dip:
psr_models = []
for p in psrs:
if p.name == "J1713+0747":
dmdip = chr.dm_exponential_dip(tmin=54700, tmax=54900)
model_j1713 = norm_model + dmdip
psr_models.append(model_j1713(p))
else:
psr_models.append(norm_model(p))
else:
psr_models = [norm_model(p) for p in psrs]
pta = signal_base.PTA(psr_models)
pta.set_default_params(noise_dict)
# set up jump groups by red noise groups
# groups = sampler.get_parameter_groups(pta)
if not os.path.exists(args.outdir):
os.mkdir(args.outdir)
np.savetxt(args.outdir + "/pars.txt", pta.param_names, fmt="%s")
np.savetxt(
args.outdir + "/priors.txt",
list(map(lambda x: str(x.__repr__()), pta.params)),
fmt="%s",
)
class sw_trans:
def __init__(self):
self.ppf = SW.ACE_RV.ppf
def __call__(self, quantile):
return self.ppf(quantile)
class uniform_trans:
def __init__(self, pmin, pmax):
self.width = pmax - pmin
self.pmin = pmin
def __call__(self, quantile):
return quantile * self.width + self.pmin
class normal_trans:
def __init__(self, mean, std):
self.rvs = sps.norm(loc=mean, scale=std)
def __call__(self, quantile):
return self.rvs.ppf(quantile)
transforms = []
for nm, param in zip(pta.param_names, pta.params):
if param.type.lower() == "uniform":
pmin = param.prior._defaults["pmin"]
pmax = param.prior._defaults["pmax"]
transforms.append(uniform_trans(pmin, pmax))
elif param.type.lower() == "normal":
mu = param.prior._defaults["mu"]
sigma = param.prior._defaults["sigma"]
transforms.append(normal_trans(mu, sigma))
elif param.type.lower() == "ace_swepam_parameter":
transforms.append(sw_trans())
def transform(quantile):
return np.array([t(q) for q, t in zip(quantile, transforms)])
sampler1 = ultranest.ReactiveNestedSampler(
pta.param_names,
pta.get_lnlikelihood,
transform,
log_dir=args.outdir,
resume=True,
)
ndim = len(pta.params)
sampler1.stepsampler = ultranest.stepsampler.RegionSliceSampler(nsteps=2 * ndim)
sampler1.run(
dlogz=0.5 + 0.1 * ndim,
# update_interval_iter_fraction=0.4 if ndim > 20 else 0.2,
# max_num_improvement_loops=3,
min_num_live_points=400,
)