-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnltm_setup_universal_pta_v1.py
667 lines (596 loc) · 24.1 KB
/
nltm_setup_universal_pta_v1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
import numpy as np
import glob, os, sys, pickle, json, inspect
from collections import OrderedDict
current_path = os.getcwd()
splt_path = current_path.split("/")
top_path_idx = splt_path.index("nanograv")
# top_path_idx = splt_path.index("akaiser")
# top_path_idx = splt_path.index("ark0015")
top_dir = "/".join(splt_path[0 : top_path_idx + 1])
e_e_path = top_dir + "/enterprise_extensions/"
e_path = top_dir + "/enterprise/"
ptmcmc_path = top_dir + "/PTMCMCSampler"
sys.path.insert(0, ptmcmc_path)
sys.path.insert(0, e_path)
sys.path.insert(0, e_e_path)
from PTMCMCSampler.PTMCMCSampler import PTSampler as ptmcmc
import enterprise
from enterprise.pulsar import Pulsar
from enterprise.signals import utils
from enterprise.signals import parameter
from enterprise.signals import white_signals
from enterprise.signals import signal_base
from enterprise.signals import selections
from enterprise.signals import gp_signals
import enterprise_extensions as e_e
from enterprise_extensions import sampler
from enterprise_extensions import models
from enterprise_extensions.sampler import (
JumpProposal,
get_parameter_groups,
get_timing_groups,
group_from_params,
)
from enterprise_extensions.timing import timing_block
from enterprise_extensions.blocks import channelized_backends
def pta_setup(
psr,
datarelease,
psr_name,
tm_var=True,
red_var=False,
white_var=True,
fit_remaining_pars=True,
lin_dmx_jump_fd=True,
wideband=False,
fixed_remaining_pars=False,
sample_cos=True,
tm_linear=False,
tm_prior="uniform",
incTimingModel=True,
Ecorr_gp_basis=False,
pal2_priors=True,
):
nltm_params = []
ltm_list = []
fixed_list = []
tm_param_dict = {}
for par in psr.fitpars:
if par == "Offset":
ltm_list.append(par)
elif "DMX" in par and any([lin_dmx_jump_fd, wideband, fixed_remaining_pars]):
if fixed_remaining_pars:
fixed_list.append(par)
else:
ltm_list.append(par)
elif "JUMP" in par and any([lin_dmx_jump_fd, fixed_remaining_pars]):
if fixed_remaining_pars:
fixed_list.append(par)
else:
ltm_list.append(par)
elif "FD" in par and any([lin_dmx_jump_fd, fixed_remaining_pars]):
if fixed_remaining_pars:
fixed_list.append(par)
else:
ltm_list.append(par)
elif par == "SINI" and sample_cos:
nltm_params.append("COSI")
else:
nltm_params.append(par)
if par in ["PBDOT", "XDOT"] and hasattr(psr, "t2pulsar"):
par_val = np.double(psr.t2pulsar.vals()[psr.t2pulsar.pars().index(par)])
par_sigma = np.double(psr.t2pulsar.errs()[psr.t2pulsar.pars().index(par)])
if np.log10(par_sigma) > -10.0:
print(
f"USING PHYSICAL {par}. Val: ", par_val, "Err: ", par_sigma * 1e-12
)
lower = par_val - 50 * par_sigma * 1e-12
upper = par_val + 50 * par_sigma * 1e-12
# lower = pbdot - 5 * pbdot_sigma * 1e-12
# upper = pbdot + 5 * pbdot_sigma * 1e-12
tm_param_dict[par] = {
"prior_mu": par_val,
"prior_sigma": par_sigma * 1e-12,
"prior_lower_bound": lower,
"prior_upper_bound": upper,
}
elif par == "SINI" and datarelease == "5yr" and psr_name == "J1640+2224":
# Use the priors from Vigeland and Vallisneri 2014
if hasattr(psr, "t2pulsar"):
sini_mu = np.double(
psr.t2pulsar.vals()[psr.t2pulsar.pars().index("SINI")]
)
sini_err = np.double(
psr.t2pulsar.errs()[psr.t2pulsar.pars().index("SINI")]
)
elif hasattr(psr, "model"):
sini_mu = np.double(getattr(psr.model, par).value)
sini_err = np.double(getattr(psr.model, par).uncertainty_value)
print(sini_mu, sini_err)
if sample_cos:
cosi_mu = np.sqrt(1 - sini_mu**2)
cosi_err = np.double(
np.sqrt((sini_err * sini_mu) ** 2 / (1 - sini_mu**2))
)
tm_param_dict["COSI"] = {
"prior_mu": cosi_mu,
"prior_sigma": cosi_err,
"prior_lower_bound": 0.0,
"prior_upper_bound": 1.0,
}
else:
tm_param_dict["SINI"] = {
"prior_mu": sini_mu,
"prior_sigma": sini_err,
"prior_lower_bound": 0.0,
"prior_upper_bound": 1.0,
}
elif par == "PX" and datarelease == "5yr" and psr_name == "J1640+2224":
# Use the priors from Vigeland and Vallisneri 2014
if hasattr(psr, "t2pulsar"):
tm_param_dict[par] = {
"prior_mu": np.double(
psr.t2pulsar.vals()[psr.t2pulsar.pars().index(par)]
),
"prior_sigma": np.double(
psr.t2pulsar.errs()[psr.t2pulsar.pars().index(par)]
),
"prior_type": "dm_dist_px_prior",
}
elif hasattr(psr, "model"):
tm_param_dict[par] = {
"prior_mu": np.double(getattr(psr.model, par).value),
"prior_sigma": np.double(getattr(psr.model, par).uncertainty_value),
"prior_type": "dm_dist_px_prior",
}
elif par == "M2" and datarelease == "5yr" and psr_name == "J1640+2224":
# Use the priors from Vigeland and Vallisneri 2014
if hasattr(psr, "t2pulsar"):
tm_param_dict[par] = {
"prior_mu": np.double(
psr.t2pulsar.vals()[psr.t2pulsar.pars().index(par)]
),
"prior_sigma": np.double(
psr.t2pulsar.errs()[psr.t2pulsar.pars().index(par)]
),
"prior_lower_bound": 1e-10,
"prior_upper_bound": 10.0,
}
elif hasattr(psr, "model"):
tm_param_dict[par] = {
"prior_mu": np.double(getattr(psr.model, par).value),
"prior_sigma": np.double(getattr(psr.model, par).uncertainty_value),
"prior_lower_bound": 1e-10,
"prior_upper_bound": 10.0,
}
if not tm_linear and tm_var:
print(
"Non-linearly varying these values: ",
nltm_params,
"\n in pulsar ",
psr_name,
)
elif tm_linear and tm_var:
print("Using linear approximation for all timing parameters.")
else:
print("Not varying timing parameters.")
if fit_remaining_pars and tm_var:
print("Linearly varying these values: ", ltm_list)
if fixed_remaining_pars:
print("Fixing these parameters: ", fixed_list)
print("Using ", tm_prior, " prior.")
"""
# define selection by observing backend
if datarelease == "5yr":
s = timing_block(
psr,
tm_param_list=nltm_params,
ltm_list=ltm_list,
prior_type=tm_prior,
prior_sigma=2.0,
prior_lower_bound=-5.0,
prior_upper_bound=5.0,
tm_param_dict=tm_param_dict,
fit_remaining_pars=fit_remaining_pars,
)
select = "none"
if select == "backend":
backend = selections.Selection(selections.by_backend)
else:
# define no selection
backend = selections.Selection(selections.no_selection)
# white noise parameters
efac = parameter.Uniform(0.01, 10.0)
# white noise signals
s += white_signals.MeasurementNoise(efac=efac, selection=backend, name=None)
model = s(psr)
# set up PTA
pta = signal_base.PTA([model])
else:
"""
if tm_var and not tm_linear:
if pal2_priors:
s = timing_block(
psr,
tm_param_list=nltm_params,
ltm_list=ltm_list,
prior_type=tm_prior,
prior_sigma=2.0,
prior_lower_bound=-500.0,
prior_upper_bound=500.0,
tm_param_dict=tm_param_dict,
fit_remaining_pars=fit_remaining_pars,
wideband_kwargs={},
)
# red noise
if red_var:
s += red_noise_block(
psd="powerlaw",
prior="uniform",
components=30,
gamma_val=None,
coefficients=False,
select=None,
)
# define selection by observing backend
backend = selections.Selection(selections.by_backend)
# define selection by nanograv backends
backend_ng = selections.Selection(selections.nanograv_backends)
backend_ch = selections.Selection(channelized_backends)
# white noise parameters
efac = parameter.Uniform(0.001, 10.0)
equad = parameter.Uniform(-10.0, -4.0)
ecorr = parameter.Uniform(-8.5, -4.0)
# white noise signals
ef = white_signals.MeasurementNoise(efac=efac, selection=backend, name=None)
eq = white_signals.EquadNoise(
log10_equad=equad, selection=backend, name=None
)
if Ecorr_gp_basis:
ec = gp_signals.EcorrBasisModel(log10_ecorr=ecorr, selection=backend_ch)
else:
ec = white_signals.EcorrKernelNoise(
log10_ecorr=ecorr, selection=backend_ch
)
# combine signals
s += ef + eq + ec
model = s(psr)
# set up PTA
pta = signal_base.PTA([model])
else:
model_args = inspect.getfullargspec(models.model_singlepsr_noise)
model_keys = model_args[0][1:]
model_vals = model_args[3]
model_kwargs = dict(zip(model_keys, model_vals))
model_kwargs.update(
{
"tm_var": tm_var,
"tm_linear": tm_linear,
"tm_param_list": nltm_params,
"ltm_list": ltm_list,
"tm_param_dict": tm_param_dict,
"tm_prior": tm_prior,
"normalize_prior_bound": 50.0,
"fit_remaining_pars": fit_remaining_pars,
"red_var": red_var,
"noisedict": None,
"white_vary": white_var,
"is_wideband": wideband,
"use_dmdata": wideband,
"dmjump_var": wideband,
"coefficients": False,
}
)
# print(model_kwargs)
pta = models.model_singlepsr_noise(psr, **model_kwargs)
else:
if incTimingModel:
# create new attribute for enterprise pulsar object
# UNSURE IF NECESSARY
psr.tm_params_orig = OrderedDict.fromkeys(psr.t2pulsar.pars())
for key in psr.tm_params_orig:
psr.tm_params_orig[key] = (
psr.t2pulsar[key].val,
psr.t2pulsar[key].err,
)
s = gp_signals.TimingModel(use_svd=False, normed=True, coefficients=False)
# define selection by observing backend
backend = selections.Selection(selections.by_backend)
# define selection by nanograv backends
backend_ng = selections.Selection(selections.nanograv_backends)
backend_ch = selections.Selection(channelized_backends)
# white noise parameters
if pal2_priors:
efac = parameter.Uniform(0.001, 10.0)
equad = parameter.Uniform(-10.0, -4.0)
ecorr = parameter.Uniform(-8.5, -4.0)
else:
efac = parameter.Uniform(0.01, 10.0)
equad = parameter.Uniform(-8.5, -5.0)
ecorr = parameter.Uniform(-8.5, -5.0)
# white noise signals
ef = white_signals.MeasurementNoise(efac=efac, selection=backend, name=None)
eq = white_signals.EquadNoise(log10_equad=equad, selection=backend, name=None)
if Ecorr_gp_basis:
ec = gp_signals.EcorrBasisModel(log10_ecorr=ecorr, selection=backend_ch)
else:
ec = white_signals.EcorrKernelNoise(log10_ecorr=ecorr, selection=backend_ch)
# combine signals
if incTimingModel:
s += ef + eq + ec
else:
s = ef + eq + ec
model = s(psr)
# set up PTA
pta = signal_base.PTA([model])
return pta
def get_tm_param_dict(psr, datarelease, psr_name):
tm_param_dict = {}
for par in psr.fitpars:
if par in ["PBDOT", "XDOT"] and hasattr(psr, "t2pulsar"):
par_val = np.double(psr.t2pulsar.vals()[psr.t2pulsar.pars().index(par)])
par_sigma = np.double(psr.t2pulsar.errs()[psr.t2pulsar.pars().index(par)])
if np.log10(par_sigma) > -10.0:
print(
f"USING PHYSICAL {par}. Val: ", par_val, "Err: ", par_sigma * 1e-12
)
lower = par_val - 50 * par_sigma * 1e-12
upper = par_val + 50 * par_sigma * 1e-12
# lower = pbdot - 5 * pbdot_sigma * 1e-12
# upper = pbdot + 5 * pbdot_sigma * 1e-12
tm_param_dict[par] = {
"prior_mu": par_val,
"prior_sigma": par_sigma * 1e-12,
"prior_lower_bound": lower,
"prior_upper_bound": upper,
}
elif par == "SINI" and datarelease == "5yr" and psr_name == "J1640+2224":
# Use the priors from Vigeland and Vallisneri 2014
if hasattr(psr, "t2pulsar"):
sini_mu = np.double(
psr.t2pulsar.vals()[psr.t2pulsar.pars().index("SINI")]
)
sini_err = np.double(
psr.t2pulsar.errs()[psr.t2pulsar.pars().index("SINI")]
)
elif hasattr(psr, "model"):
sini_mu = np.double(getattr(psr.model, par).value)
sini_err = np.double(getattr(psr.model, par).uncertainty_value)
print(sini_mu, sini_err)
if sample_cos:
cosi_mu = np.sqrt(1 - sini_mu**2)
cosi_err = np.double(
np.sqrt((sini_err * sini_mu) ** 2 / (1 - sini_mu**2))
)
tm_param_dict["COSI"] = {
"prior_mu": cosi_mu,
"prior_sigma": cosi_err,
"prior_lower_bound": 0.0,
"prior_upper_bound": 1.0,
}
else:
tm_param_dict["SINI"] = {
"prior_mu": sini_mu,
"prior_sigma": sini_err,
"prior_lower_bound": 0.0,
"prior_upper_bound": 1.0,
}
elif par == "PX" and datarelease == "5yr" and psr_name == "J1640+2224":
# Use the priors from Vigeland and Vallisneri 2014
if hasattr(psr, "t2pulsar"):
tm_param_dict[par] = {
"prior_mu": np.double(
psr.t2pulsar.vals()[psr.t2pulsar.pars().index(par)]
),
"prior_sigma": np.double(
psr.t2pulsar.errs()[psr.t2pulsar.pars().index(par)]
),
"prior_type": "dm_dist_px_prior",
}
elif hasattr(psr, "model"):
tm_param_dict[par] = {
"prior_mu": np.double(getattr(psr.model, par).value),
"prior_sigma": np.double(getattr(psr.model, par).uncertainty_value),
"prior_type": "dm_dist_px_prior",
}
elif par == "M2" and datarelease == "5yr" and psr_name == "J1640+2224":
# Use the priors from Vigeland and Vallisneri 2014
if hasattr(psr, "t2pulsar"):
tm_param_dict[par] = {
"prior_mu": np.double(
psr.t2pulsar.vals()[psr.t2pulsar.pars().index(par)]
),
"prior_sigma": np.double(
psr.t2pulsar.errs()[psr.t2pulsar.pars().index(par)]
),
"prior_lower_bound": 1e-10,
"prior_upper_bound": 10.0,
}
elif hasattr(psr, "model"):
tm_param_dict[par] = {
"prior_mu": np.double(getattr(psr.model, par).value),
"prior_sigma": np.double(getattr(psr.model, par).uncertainty_value),
"prior_lower_bound": 1e-10,
"prior_upper_bound": 10.0,
}
return tm_param_dict
def get_initial_sample(psr, pta, tm_param_dict, zero_start=True):
if zero_start:
x0_list = []
for p in pta.params:
if "timing" in p.name:
if "DMX" in p.name:
p_name = ("_").join(p.name.split("_")[-2:])
else:
p_name = p.name.split("_")[-1]
if psr.tm_params_orig[p_name][-1] == "normalized":
x0_list.append(np.double(0.0))
else:
if p_name in tm_param_dict.keys():
x0_list.append(np.double(tm_param_dict[p_name]["prior_mu"]))
else:
x0_list.append(np.double(psr.tm_params_orig[p_name][0]))
else:
x0_list.append(p.sample())
x0 = np.asarray(x0_list)
else:
x0 = np.hstack([p.sample() for p in pta.params])
return x0
def setup_sampler(
pta,
outdir="chains",
resume=False,
empirical_distr=None,
groups=None,
human=None,
save_ext_dists=False,
timing=False,
psr=None,
loglkwargs={},
logpkwargs={},
):
"""
Sets up an instance of PTMCMC sampler.
We initialize the sampler the likelihood and prior function
from the PTA object. We set up an initial jump covariance matrix
with fairly small jumps as this will be adapted as the MCMC runs.
We will setup an output directory in `outdir` that will contain
the chain (first n columns are the samples for the n parameters
and last 4 are log-posterior, log-likelihood, acceptance rate, and
an indicator variable for parallel tempering but it doesn't matter
because we aren't using parallel tempering).
We then add several custom jump proposals to the mix based on
whether or not certain parameters are in the model. These are
all either draws from the prior distribution of parameters or
draws from uniform distributions.
save_ext_dists: saves distributions that have been extended to
cover priors as a pickle to the outdir folder. These can then
be loaded later as distributions to save a minute at the start
of the run.
"""
# dimension of parameter space
params = pta.param_names
ndim = len(params)
# initial jump covariance matrix
cov = np.diag(np.ones(ndim) * 0.1**2)
# parameter groupings
if groups is None:
groups = get_parameter_groups(pta)
if timing:
groups.extend(get_timing_groups(pta))
groups.append(
group_from_params(
pta,
[
x
for x in pta.param_names
if any(y in x for y in ["timing_model", "ecorr"])
],
)
)
sampler = ptmcmc(
ndim,
pta.get_lnlikelihood,
pta.get_lnprior,
cov,
groups=groups,
outDir=outdir,
resume=resume,
loglkwargs=loglkwargs,
logpkwargs=logpkwargs,
)
# additional jump proposals
jp = JumpProposal(
pta,
empirical_distr=empirical_distr,
save_ext_dists=save_ext_dists,
outdir=outdir,
timing=timing,
psr=psr,
sampler=sampler,
)
sampler.jp = jp
# always add draw from prior
sampler.addProposalToCycle(jp.draw_from_prior, 15)
# try adding empirical proposals
if empirical_distr is not None:
print("Attempting to add empirical proposals...\n")
sampler.addProposalToCycle(jp.draw_from_empirical_distr, 30)
# Red noise prior draw
if "red noise" in jp.snames:
print("Adding red noise prior draws...\n")
sampler.addProposalToCycle(jp.draw_from_red_prior, 10)
# DM GP noise prior draw
if "dm_gp" in jp.snames:
print("Adding DM GP noise prior draws...\n")
sampler.addProposalToCycle(jp.draw_from_dm_gp_prior, 10)
# DM annual prior draw
if "dm_s1yr" in jp.snames:
print("Adding DM annual prior draws...\n")
sampler.addProposalToCycle(jp.draw_from_dm1yr_prior, 10)
# DM dip prior draw
if "dmexp" in jp.snames:
print("Adding DM exponential dip prior draws...\n")
sampler.addProposalToCycle(jp.draw_from_dmexpdip_prior, 10)
# DM cusp prior draw
if "dm_cusp" in jp.snames:
print("Adding DM exponential cusp prior draws...\n")
sampler.addProposalToCycle(jp.draw_from_dmexpcusp_prior, 10)
# DMX prior draw
if "dmx_signal" in jp.snames:
print("Adding DMX prior draws...\n")
sampler.addProposalToCycle(jp.draw_from_dmx_prior, 10)
# Ephemeris prior draw
if "d_jupiter_mass" in pta.param_names:
print("Adding ephemeris model prior draws...\n")
sampler.addProposalToCycle(jp.draw_from_ephem_prior, 10)
# GWB uniform distribution draw
if np.any([("gw" in par and "log10_A" in par) for par in pta.param_names]):
print("Adding GWB uniform distribution draws...\n")
sampler.addProposalToCycle(jp.draw_from_gwb_log_uniform_distribution, 10)
# Dipole uniform distribution draw
if "dipole_log10_A" in pta.param_names:
print("Adding dipole uniform distribution draws...\n")
sampler.addProposalToCycle(jp.draw_from_dipole_log_uniform_distribution, 10)
# Monopole uniform distribution draw
if "monopole_log10_A" in pta.param_names:
print("Adding monopole uniform distribution draws...\n")
sampler.addProposalToCycle(jp.draw_from_monopole_log_uniform_distribution, 10)
# Altpol uniform distribution draw
if "log10Apol_tt" in pta.param_names:
print("Adding alternative GW-polarization uniform distribution draws...\n")
sampler.addProposalToCycle(jp.draw_from_altpol_log_uniform_distribution, 10)
# BWM prior draw
if "bwm_log10_A" in pta.param_names:
print("Adding BWM prior draws...\n")
sampler.addProposalToCycle(jp.draw_from_bwm_prior, 10)
# FDM prior draw
if "fdm_log10_A" in pta.param_names:
print("Adding FDM prior draws...\n")
sampler.addProposalToCycle(jp.draw_from_fdm_prior, 10)
# CW prior draw
if "cw_log10_h" in pta.param_names:
print("Adding CW strain prior draws...\n")
sampler.addProposalToCycle(jp.draw_from_cw_log_uniform_distribution, 10)
if "cw_log10_Mc" in pta.param_names:
print("Adding CW prior draws...\n")
sampler.addProposalToCycle(jp.draw_from_cw_distribution, 10)
# Non Linear Timing Draws
if "timing_model" in jp.snames:
print("Adding timing model jump proposal...\n")
sampler.addProposalToCycle(jp.draw_from_timing_model, 25)
if "timing_model" in jp.snames:
print("Adding timing model prior draw...\n")
sampler.addProposalToCycle(jp.draw_from_timing_model_prior, 10)
if timing:
# SCAM and AM Draws
# add SCAM
print("Adding SCAM Jump Proposal...\n")
sampler.addProposalToCycle(jp.covarianceJumpProposalSCAM, 30)
# add AM
print("Adding AM Jump Proposal...\n")
sampler.addProposalToCycle(jp.covarianceJumpProposalAM, 15)
# add DE
print("Adding DE Jump Proposal...\n")
sampler.addProposalToCycle(jp.DEJump, 30)
return sampler