-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathInf_Gain_RL_Sampling.py
235 lines (208 loc) · 8.03 KB
/
Inf_Gain_RL_Sampling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
# -*- coding: utf-8 -*-
"""
Created on Fri Jun 14 08:02:48 2019
@author: ariji
"""
import GPy
import numpy as np
import pandas as pd
import pickle
import copy
from sklearn.cluster import KMeans
from collections import defaultdict
import itertools
import collections
import matplotlib.pyplot as plt
from scipy.linalg import block_diag
# Reading Dataset #
df=pd.read_excel('D:/GP-Data/Depth_lat_long.xlsx',header=None)
df.columns=["index","long","lat","depth"]
long_ar_test = np.transpose([np.array(df["long"])])
lat_ar_test = np.transpose([np.array(df["lat"])])
depth_ar_test = np.transpose([np.array(df["depth"])])
XY_test=np.column_stack((long_ar_test,lat_ar_test))
DLL=np.column_stack((long_ar_test,lat_ar_test,depth_ar_test))
DLL1=copy.deepcopy(DLL)
def Model(xy_cluster,x_cluster,y_cluster,z_cluster):
len_scl1=abs(max(x_cluster)[0]-min(x_cluster)[0])
len_scl2=abs(max(y_cluster)[0]-min(y_cluster)[0])
k1a = GPy.kern.RBF(input_dim=2,ARD=True, variance=np.var(z_cluster), lengthscale=[len_scl1,len_scl2])
gauss = GPy.likelihoods.Gaussian(variance=0.1*np.var(z_cluster))
exact = GPy.inference.latent_function_inference.ExactGaussianInference();
mf = GPy.core.Mapping(2,1); #(input_dim, output_dim)
mf.f = lambda x:np.mean(z_cluster)
mf.update_gradients = lambda a,b: None
m2 = GPy.core.GP(X=xy_cluster, Y=z_cluster, kernel=k1a, mean_function=mf, likelihood=gauss, inference_method=exact)
m2.optimize()
return m2
'''
def Compactness(list_of_clusters_depth,depth_list=depth_ar):
var_overall=len(depth_list)*(np.var(depth_list))
var_lst=[]
for d in list_of_clusters_depth:
var_clus=len(d)*(np.var(d))
var_lst.append(var_clus)
compactness=sum(var_lst)/var_overall
return compactness
'''
c = open('D:/GP-Data/Random_Sample_500_new.pickle', 'rb');
LL = pickle.load(c);
c.close()
New=[list(r) for r in LL]
X,Y,depth_ar=np.hsplit(LL,3)
XY=np.hstack((X,Y))
clusters = open('D:/GP-Data/Random_clus_500_new.pickle', 'rb');
ML = pickle.load(clusters);
clusters.close()
G=ML[1]
XY_arr=ML[2]
clustering=ML[6]
long_clus=ML[3]
lat_clus=ML[4]
dep_clus=ML[5]
pred = open('D:/GP-Data/prediction_else_new.pickle', 'rb');
XY_pred,D_pred,M_pred,V_pred = pickle.load(pred);
pred.close()
XYD=np.hstack((XY_pred,D_pred))
prev=list(zip(V_pred,M_pred,XYD))
M=[]
for y in range(len(G)):
model=Model(XY_arr[y],long_clus[y],lat_clus[y],dep_clus[y])
M.append(model)
# Distance function(KM) #
# Reference: https://www.movable-type.co.uk/scripts/latlong.html #
def Distance(long1,lat1,long2,lat2):
from math import radians, cos, sin, asin, sqrt
R=6372.8
dLat = radians(lat2 - lat1)
dLon = radians(long2 - long1)
lat1 = radians(lat1)
lat2 = radians(lat2)
a = sin(dLat/2)**2 + cos(lat1)*cos(lat2)*sin(dLon/2)**2
c = 2*asin(min(1,sqrt(a)))
return R * c
def InfGain(point_xy_lst,New=New,XY_test=XY_test,M=M,clustering=clustering,G=G,XY_arr=XY_arr,dep_clus=dep_clus):
XY_arr_ext=copy.deepcopy(XY_arr)
dep_clus_ext=copy.deepcopy(dep_clus)
new_arr=np.array(New)
pt_tst=np.array([point_xy_lst])
clus_pred=clustering.predict(pt_tst)
m_pt=M[clus_pred[0]]
mean,var=m_pt.predict(pt_tst, full_cov=False, Y_metadata=None, kern=None, likelihood=None, include_likelihood=True)
pp=point_xy_lst+[mean[0][0]]
MNew=New+[pp]
XY_arr_ext[clus_pred[0]]=np.concatenate((XY_arr[clus_pred[0]],pt_tst),axis=0)
dep_clus_ext[clus_pred[0]]=np.concatenate((dep_clus[clus_pred[0]],mean),axis=0)
mnew_arr=np.array(MNew)
x,y,z=np.hsplit(new_arr,3)
mx,my,mz=np.hsplit(mnew_arr,3)
xy=np.hstack((x,y))
mxy=np.hstack((mx,my))
V=[]
for z in range(len(G)):
k6a = GPy.kern.RBF(input_dim=2,ARD=True, variance=M[z].rbf.variance[0], lengthscale=[M[z].rbf.lengthscale[0],M[z].rbf.lengthscale[1]])
gauss = GPy.likelihoods.Gaussian(variance=M[z].Gaussian_noise.variance[0])
exact = GPy.inference.latent_function_inference.ExactGaussianInference()
mf1 = GPy.core.Mapping(2,1); #(input_dim, output_dim)
mf1.f = lambda x:np.mean(dep_clus[z])
mf1.update_gradients = lambda a,b: None
m3=GPy.core.GP(X=XY_arr[z], Y=dep_clus[z], kernel=k6a,mean_function=mf1,likelihood=gauss, inference_method=exact)
ind=np.where(clus_pred==z)
if len(list(ind[0]))!=0:
XYT=[]
for n in ind:
XYT.extend(XY_test[n])
XYT=np.array(XYT)
p=m3.predict(XYT, full_cov=False, Y_metadata=None, kern=None, likelihood=None, include_likelihood=True)
V.extend(list(p[1].ravel()))
else:
continue
V1=[]
for z1 in range(len(G)):
k6a = GPy.kern.RBF(input_dim=2,ARD=True, variance=M[z1].rbf.variance[0], lengthscale=[M[z1].rbf.lengthscale[0],M[z1].rbf.lengthscale[1]])
gauss = GPy.likelihoods.Gaussian(variance=M[z1].Gaussian_noise.variance[0])
exact = GPy.inference.latent_function_inference.ExactGaussianInference()
mf1 = GPy.core.Mapping(2,1); #(input_dim, output_dim)
mf1.f = lambda x:np.mean(dep_clus[z1])
mf1.update_gradients = lambda a,b: None
m3=GPy.core.GP(X=XY_arr_ext[z1], Y=dep_clus_ext[z1], kernel=k6a,mean_function=mf1,likelihood=gauss, inference_method=exact)
ind=np.where(clus_pred==z1)
if len(list(ind[0]))!=0:
XYT=[]
for n in ind:
XYT.extend(XY_test[n])
XYT=np.array(XYT)
p=m3.predict(XYT, full_cov=False, Y_metadata=None, kern=None, likelihood=None, include_likelihood=True)
V1.extend(list(p[1].ravel()))
else:
continue
gain=sum(V)-sum(V1)
return gain
prev1=[]
for I in DLL1:
if list(I) not in New:
prev1.append(I)
for s in range(6):
pt1=New[-1]
dist_all=[(Distance(pt1[0],pt1[1],list(p)[0],list(p)[1]),p) for p in prev1]
in_circle=[f[1] for f in dist_all if f[0]<5.0]
if len(in_circle)==0:
in_circle.append(min(dist_all)[1])
infgain=[(InfGain([t[0],t[1]]),t) for t in in_circle]
pt=max(infgain)[1]
for i in range(10):
New.append(list(pt))
prev2=[]
for I in prev1:
if list(I) not in New:
prev2.append(I)
prev1=[]
prev1=prev1+prev2
dist_all_l=[(Distance(pt[0],pt[1],p[0],p[1]),p) for p in prev1 if Distance(pt[0],pt[1],p[0],p[1])!=0.0]
in_circle_l=[f[1] for f in dist_all_l if f[0]<5.0]
if len(in_circle_l)==0:
in_circle_l.append(min(dist_all_l)[1])
infgain1=[(InfGain([t[0],t[1]]),t) for t in in_circle_l]
pt=max(infgain1)[1]
train_pts=np.array([np.array(r) for r in New])
X_train,Y_train,depth_ar_train=np.hsplit(train_pts,3)
XY_train=np.hstack((X_train,Y_train))
L=[]
n_clus1=int(len(New)*26/4000)
clustering=KMeans(n_clusters=n_clus1).fit(XY_train)
l=clustering.labels_
lst=list(zip(l,New))
d = defaultdict(list)
for k, *v in lst:
d[k].append(v)
od = collections.OrderedDict(sorted(d.items()))
G=[]
for i in od.values():
merged = list(itertools.chain(*i))
merged_ar=np.array(merged)
G.append(merged_ar)
long_clus=[]
lat_clus=[]
dep_clus=[]
for g in G:
loc,lac,dec=np.hsplit(g,3)
long_clus.append(loc)
lat_clus.append(lac)
dep_clus.append(dec)
XY_arr=[]
for h in range(len(G)):
xyc=np.hstack((long_clus[h],lat_clus[h]))
XY_arr.append(xyc)
M=[]
for y in range(len(G)):
model=Model(XY_arr[y],long_clus[y],lat_clus[y],dep_clus[y])
M.append(model)
'''
dm = open('E:/GP-Data/Gain_sample_2500_5km.pickle', 'wb')
pickle.dump( New , dm)
dm.close()
New=np.array(New)
pltx,plty,pltd=np.hsplit(New,3)
plt.scatter(long_ar_test,lat_ar_test,s=3)
plt.plot(pltx,plty)
'''