forked from patrickloeber/pytorchTutorial
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtask1.py
110 lines (95 loc) · 4.55 KB
/
task1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
# Import necessary libraries
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor
# Download training data from open datasets.
# FashionMNIST is a dataset of Zalando's article images, with 60k training examples and 10k test examples.
# Each example is a 28x28 grayscale image, associated with a label from 10 classes.
training_data = datasets.FashionMNIST(
root="data", # Specifies the root directory of the dataset
train=True, # Specifies this data will be used for training the model
download=True, # Downloads the data from the internet if it's not available at root.
transform=ToTensor(), # Converts a PIL Image or numpy.ndarray to tensor.
)
# Download test data from open datasets.
test_data = datasets.FashionMNIST(
root="data",
train=False, # Specifies this data will be used for testing the model
download=True,
transform=ToTensor(),
)
# Define the batch size for the data loader.
batch_size = 64
# Create data loaders.
# Data loader combines a dataset and a sampler, and provides an iterable over the given dataset.
train_dataloader = DataLoader(training_data, batch_size=batch_size)
test_dataloader = DataLoader(test_data, batch_size=batch_size)
# Print the shape of the data
for X, y in test_dataloader:
print(f"Shape of X [N, C, H, W]: {X.shape}")
print(f"Shape of y: {y.shape} {y.dtype}")
break
# Get cpu, gpu or mps device for training.
device = (
"cuda" # CUDA is an API that allows for using the compute power of Nvidia GPUs
if torch.cuda.is_available()
else "mps" # MPS is a feature to allow multiple CUDA processes to share a single GPU context
if torch.backends.mps.is_available()
else "cpu" # If neither CUDA nor MPS is available, use CPU
)
print(f"Using {device} device")
# Define model
class NeuralNetwork(nn.Module):
def __init__(self):
super().__init__()
self.flatten = nn.Flatten() # Flattens the input. Does not affect the batch size.
self.linear_relu_stack = nn.Sequential(
nn.Linear(28*28, 512), # Applies a linear transformation to the incoming data
nn.ReLU(), # Applies the rectified linear unit function element-wise
nn.Linear(512, 512),
nn.ReLU(),
nn.Linear(512, 10)
)
def forward(self, x):
x = self.flatten(x)
logits = self.linear_relu_stack(x)
return logits
# Initialize the NeuralNetwork and move the model to the device
model = NeuralNetwork().to(device)
print(model)
# Define the loss function and the optimizer
loss_fn = nn.CrossEntropyLoss() # CrossEntropyLoss combines LogSoftmax and NLLLoss in one single class.
optimizer = torch.optim.SGD(model.parameters(), lr=1) # Stochastic Gradient Descent
# Define the training function
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
model.train() # Set the model to training mode
for batch, (X, y) in enumerate(dataloader):
X, y = X.to(device), y.to(device)
# Compute prediction error
pred = model(X)
loss = loss_fn(pred, y)
# Backpropagation
optimizer.zero_grad() # Resets the gradients to zero
loss.backward() # Computes the gradient of the loss w.r.t. the parameters (or anything requiring gradients) using backpropagation.
optimizer.step() # Performs a single optimization step (parameter update)
if batch % 100 == 0:
loss, current = loss.item(), (batch + 1) * len(X)
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
# Define the testing function
def test(dataloader, model, loss_fn):
size = len(dataloader.dataset)
num_batches = len(dataloader)
model.eval() # Set the model to evaluation mode
test_loss, correct = 0, 0
with torch.no_grad(): # Disabling gradient calculation is useful for inference, when you are sure that you will not call Tensor.backward()
for X, y in dataloader:
X, y = X.to(device), y.to(device)
pred = model(X) # Pass the data through the model to get predictions
test_loss += loss_fn(pred, y).item() # Compute the loss and add it to the total test loss
correct += (pred.argmax(1) == y).type(torch.float).sum().item() # Count the number of correct predictions
test_loss /= num_batches # Compute the average test loss
correct /= size # Compute the accuracy
print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n") # Print the test error, accuracy, and average loss