-
Notifications
You must be signed in to change notification settings - Fork 169
/
Copy pathcotraining.m
102 lines (86 loc) · 2.69 KB
/
cotraining.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
function [C] = cotraining(views,num_views,numClust,projev,numiter,prior)
% co-trained spectral clustering algorithm (ICML, 2011)
% INPUTS:
% DATA: cell array of length 'num_views' of data matrices of size N x dim
% numClust: desired number of clusters
% SIGMA: array of width parameters for Gaussian kernel in each view
% TRUTH: ground truth clustering
% PROJEV: determines number of top eigenvectors of Laplacian onto which the projection
% is done in the algorithm (the paper considers projev=1 but it was later observed
% that considering more eigenvectors in the projection step helps),
% although the final k-mean clustering is run only on top-'numClust'
% eigenvectors of the graph Laplacian.
% NUMITER: number of iterations
% OUTPUTS:
% nmi_max: maximum nmi value obtained
kmeans_avg_iter = 10;
opts.disp = 0;
N=length(views{1});
numEV = numClust;
numVects = numClust;
for i=1:num_views
fprintf('computing kernel for view %d\n',i);
K(:,:,i) = views{i};
%K1 = X1*X1';
D = diag(sum(K(:,:,i),1));
%L1 = D1 - K1;
L(:,:,i) = sqrt(inv(D))*K(:,:,i)*sqrt(inv(D));
L(:,:,i)=(L(:,:,i)+L(:,:,i)')/2;
end
V = cell(num_views,1);
for i=1:num_views
[V{i}] = mybaseline_spectral_onkernel(K(:,:,i),numClust,projev);
% TODO:
% [V{i}] = mybaseline_spectral_onkernel(K(:,:,i),2,projev);
end
save V.mat V;
X = V;
Y = K; Y_norm = Y;
for i=1:numiter
fprintf ('iteration %d...\n', i);
Sall = zeros(N,N);
for j=1:num_views
Sall = Sall + X{j}*X{j}';
end
for j=1:num_views
Y(:,:,j) = K(:,:,j)*(Sall - X{j}*X{j}');
Y(:,:,j) = (Y(:,:,j) + Y(:,:,j)')/2; % + 1*eye(N);
%Y_norm(:,:,j) = renormalize(Y(:,:,j));
Y_norm(:,:,j) = Y(:,:,j);
opts.disp = 0;
[X{j}] = mybaseline_spectral_onkernel(Y_norm(:,:,j),numClust,projev);
% TODO:
% [X{j}] = mybaseline_spectral_onkernel(Y_norm(:,:,j),2,projev);
end
end
if prior==0
% no prior view
AU=[]; % all U from views, column-wise concate
for i=1:num_views
AU=[AU,X{i}(:,1:ceil(numClust*1))];
end
else
AU=X{prior}(:,1:ceil(numClust*1));
end
save AU.mat AU;
save X.mat X;
size(AU)
if (1)
norm_mat = repmat(sqrt(sum(AU.*AU,2)),1,size(AU,2));
%%avoid divide by zero
for i=1:size(norm_mat,1)
if (norm_mat(i,1)==0)
norm_mat(i,:) = 1;
end
end
AU = AU./norm_mat;
end
C = kmeans(AU,numClust,'EmptyAction','drop');
% function [K] = renormalize(K)
% mn = min(min(K));
% mx = max(max(K));
% if (mn < 0)
% K = (K - mn) / (mx-mn);
% K = (K+K')/2;
% K = K - mn;
% end