-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfigure2.m
799 lines (767 loc) · 30.3 KB
/
figure2.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
%creating figure 2
svg_save_dir = 'figure2_svg';
print_svg = @(name) print('-dsvg', fullfile(svg_save_dir, [name '.svg']));
print_png = @(name) print('-dpng', '-r1800', fullfile(svg_save_dir, [name '.png']));
%% PLS representations
m_i = 6;
use_zscore = true;
[source_path, mouse_name] = DecodeTensor.default_datasets(m_i, '../../../Box/share');
opt = DecodeTensor.default_opt;
opt.restrict_trials = -1;
[T, d] = DecodeTensor.tensor_loader(source_path, mouse_name, opt);
% opt.neural_data_type = 'FST_events';
% [T_fst, d_fst] = DecodeTensor.tensor_loader(source_path, mouse_name, opt);
% opt.neural_data_type = 'spikeDeconv';
% [T_oasis, d_oasis] = DecodeTensor.tensor_loader(source_path, mouse_name, opt);
[X, ks] = DecodeTensor.tensor2dataset(T, d);
% [X_fst, ks_fst] = DecodeTensor.tensor2dataset(T_fst, d_fst);
% [X_oasis, ks_oasis] = DecodeTensor.tensor2dataset(T_oasis, d_oasis);
X_shuf = shuffle(X, ks);
if use_zscore
X = zscore(X);
X_shuf = zscore(X_shuf);
end
% X_fst_shuf = shuffle(X_fst, ks_fst);
% X_oasis_shuf = shuffle(X_oasis, ks_oasis);
[XS, stats, origin] = Utils.pls_short(X, [ceil(ks/2), mod(ks,2)]);
figure;
scatter(XS(:,1), XS(:,2), 4, 'b','filled', 'MarkerFaceAlpha', 0.02); hold on;
scatter(origin(1), origin(2), 10, 'k');
axis equal;
xlabel PLS1; ylabel PLS2;
%xlim(xlim.*0.8);
%ylim(ylim-0.01);
xlim([min(XS(:,1)) max(XS(:,1))]);
xlim([min(XS(:,2)) max(XS(:,2))]);
xl_ = xlim;
yl_ = ylim;
set(gca, 'XTick', []);
set(gca, 'YTick', []);
figure_format;
print_png('PLS_unshuf');
figure;
XS_s = (X_shuf - mean(X_shuf)) * stats.W;
origin_s = - mean(X_shuf) * stats.W;
scatter(XS_s(:,1), XS_s(:,2), 4, 'r','filled', 'MarkerFaceAlpha', 0.02); hold on;
scatter(origin_s(1), origin_s(2), 10, 'k');
xlabel PLS1; ylabel PLS2;
axis equal;
xlim(xl_); ylim(yl_);
set(gca, 'XTick', []);
set(gca, 'YTick', []);
figure_format;
print_png('PLS_shuf');
%%
figure;
scatter(XS(:,1), XS(:,2), 8, Utils.colorcode(ceil(ks/2)), 'filled', 'MarkerFaceAlpha', 0.02); hold on;
scatter(origin(1), origin(2), 10, 'k');
xlabel PLS1; ylabel PLS2;
axis equal; axis tight;
%xlim(xl_); ylim(yl_);
xl_ = xlim;
yl_ = ylim;
set(gca, 'XTick', []);
set(gca, 'YTick', []);
%text(-0.03, 0.03, 'Unshuffled', 'Color', 'b')
figure_format('boxsize', [1 1.2], 'fontsize', 6);
print_png('PLS_adjacent');
Utils.create_svg(gcf, 'figure2_svg', 'PLS_adjacent');
figure;
scatter(XS_s(:,1), XS_s(:,2), 8, Utils.colorcode(ceil(ks/2)), 'filled', 'MarkerFaceAlpha', 0.02); hold on;
scatter(origin_s(1), origin_s(2), 10, 'k');
xlabel PLS1; ylabel PLS2;
axis equal; axis tight;
xlim(xl_); ylim(yl_);
set(gca, 'XTick', []);
set(gca, 'YTick', []);
%text(-0.03, 0.03, 'Shuffled', 'Color', 'r')
figure_format('boxsize', [1 1.2], 'fontsize', 6);
print_png('PLS_adjacent_shuf');
Utils.create_svg(gcf, 'figure2_svg', 'PLS_adjacent_shuf');
% [~, stats] = Utils.pls_plot(X_fst, [ceil(ks_fst/2), mod(ks_fst,2)]);
% suptitle('Using FST\_events, unshuffled');
% colormap jet;
% xl_ = xlim;
% yl_ = ylim;
%
% Utils.pls_plot(X_fst_shuf, [ceil(ks_fst/2), mod(ks_fst,2)], stats, xl_, yl_);
% suptitle('Using FST\_events, shuffled');
% colormap jet;
%
% [~, stats] = Utils.pls_plot(X_oasis, [ceil(ks_oasis/2), mod(ks_oasis,2)]);
% suptitle('Using spikeDeconv, unshuffled');
% colormap jet;
% xl_ = xlim;
% yl_ = ylim;
%
% Utils.pls_plot(X_oasis_shuf, [ceil(ks_oasis/2), mod(ks_oasis,2)], stats, xl_, yl_);
% suptitle('Using spikeDeconv, shuffled');
% colormap jet;
% %% Measure noise in direction of signal % this section has been generalized in DecodeTensor.noise_properties
% %bin 10 as an example
%
% X10 = squeeze(T(:,10,d==1)).';
% X_noise = X10 - mean(X10);
% Noise_Cov = cov(X_noise);
%
% X11 = squeeze(T(:,11,d==1)).';
% X9 = squeeze(T(:,9,d==1)).';
% Signal_Direction_pre = mean(X10) - mean(X9);
% Signal_Direction_post = mean(X11) - mean(X10);
% Signal_Direction = (Signal_Direction_post + Signal_Direction_pre)/2;
% Signal_Direction = Signal_Direction.' ./ norm(Signal_Direction);
%
% Noise_in_Direction_of_Signal = Signal_Direction.' * Noise_Cov * Signal_Direction;
% [~, latent] = pcacov(Noise_Cov);
%
%
% T_s = DecodeTensor.shuffle_tensor(T, d);
% X10 = squeeze(T_s(:,10,d==1)).';
% X_noise = X10 - mean(X10);
% Noise_Cov = cov(X_noise);
%
% X11 = squeeze(T_s(:,11,d==1)).';
% X9 = squeeze(T_s(:,9,d==1)).';
% Signal_Direction_pre = mean(X10) - mean(X9);
% Signal_Direction_post = mean(X11) - mean(X10);
% Signal_Direction = (Signal_Direction_post + Signal_Direction_pre)/2;
% Signal_Direction = Signal_Direction.' ./ norm(Signal_Direction);
%
% Noise_in_Direction_of_Signal_s = Signal_Direction.' * Noise_Cov * Signal_Direction;
% [~, latent_s] = pcacov(Noise_Cov);
% %% Noise spectrum changes, noise loadings, and total noise in signal direction
% res = DecodeTensor.noise_properties(T, d, false);
% figure;
% subplot(1,2,1);
% plot(mean(cell2mat(res.el_pre(:)).^2));
% hold on;
% plot(mean(cell2mat(res.el_rnd(:)).^2));
% ylim([0 0.06]);
% subplot(1,2,2);
% plot(mean(cell2mat(res.el_pre_s(:)).^2));
% hold on;
% plot(mean(cell2mat(res.el_rnd_s(:)).^2));
% ylim([0 0.06]);
%
%
% figure;
% subplot(1,2,1);
% loglog(mean(cell2mat(res.noise_spectrum(:).'),2));
% ylim([1e-3 1e3]);
% subplot(1,2,2);
% loglog(mean(cell2mat(res.noise_spectrum_s(:).'),2));
% ylim([1e-3 1e3]);
%
% res_corr = DecodeTensor.noise_properties(T, d, true);
%
% figure;
% sh_by_unsh = cell2mat(res.nd_pre(:)) ./ cell2mat(res.nd_pre_s(:));
% sh_by_unsh_corr = cell2mat(res_corr.nd_pre(:)) ./ cell2mat(res_corr.nd_pre_s(:));
% sh_by_unsh_rnd = cell2mat(res.nd_rnd(:)) ./ cell2mat(res.nd_rnd_s(:));
% sh_by_unsh_rnd_corr = cell2mat(res_corr.nd_rnd(:)) ./ cell2mat(res_corr.nd_rnd_s(:));
% boxplot([sh_by_unsh, sh_by_unsh_corr, sh_by_unsh_rnd(1:38), sh_by_unsh_rnd_corr(1:38)],...
% {'Unshuffled/Shuffled', 'Unshuffled/Shuffled (corr)', 'Unshuffled/Shuffled Random', 'Unshuffled/Shuffled Random (corr)'});
%%
res = DecodeTensor.noise_properties(T, d, true);
[total_neurons, n_bins, n_trials] = size(T);
%%
figure;%TODO add errorbars/shadedErrorBars from SEM of mean op
s = cell2mat(reshape(res.el_pre',[],1)).^2;
%m = mean(s);
%e = std(s) ./ sqrt(size(s,1));
%shadedErrorBar(1:total_neurons, m, e.*norminv((1+0.95)/2), 'lineprops', 'b');
Utils.neuseries(1:total_neurons, s, 'b');
set(gca, 'XScale', 'log'); %set(gca, 'YScale', 'log');
hold on;
s_s = cell2mat(reshape(res.el_pre_s',[],1)).^2;
%m = mean(s);
%e = std(s) ./ sqrt(size(s,1));
%shadedErrorBar(1:total_neurons, m, e.*norminv((1+0.95)/2), 'lineprops', 'r');
Utils.neuseries(1:total_neurons, s_s, 'r');
xlabel 'Noise PC index'
ylabel(sprintf('Signal direction\nin PC basis\n(squared)'))
l_ = refline(0, 1./total_neurons);
l_.Color = 'k';
xlim([1 total_neurons]);
set(gca, 'YTick', [1e-4, 1./total_neurons, 1e-2]);
set(gca, 'YTickLabel', {'10^{-4}', '1/n', '10^{-2}'});
%figure_format;
%print_svg('signal_pc_loadings');
%%
figure;
n = 1:n_trials/2;
s = cell2mat(res.noise_spectrum(:).').';
m = mean(s); m = m(n);
e = std(s) ./ sqrt(size(s,1)); e = e(n);
shadedErrorBar(n, m, e.*norminv((1+0.95)/2), 'lineprops', 'b');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
hold on;
n = 1:n_trials/2;
s = cell2mat(res.noise_spectrum_s(:).').';
m = mean(s); m = m(n);
e = std(s) ./ sqrt(size(s,1)); e = e(n);
shadedErrorBar(n, m, e.*norminv((1+0.95)/2), 'lineprops', 'r');
ylim([1e-2 Inf]);
xlabel 'Noise PC index'
ylabel(sprintf('Correlation matrix\neigenvalue'))
figure_format;
print_svg('noise_spectrum');
figure;
sh_by_unsh = cell2mat(res.nd_pre(:)) ./ cell2mat(res.nd_pre_s(:));
sh_by_unsh_rnd = cell2mat(res.nd_rnd(:)) ./ cell2mat(res.nd_rnd_s(:));
boxplot([sh_by_unsh, sh_by_unsh_rnd(1:38)],...
{'Signal', 'Random'}, 'outliersize', 1);
l_ = refline(0, 1);
l_.Color = 'k';
ylim([0.3 Inf]);
set(gca, 'YTick', [1 10])
set(gca, 'YScale', 'log');
ylabel(sprintf('Unshuf./Shuf. noise\nvariance ratio'));
figure_format;
print_svg('noise_attenuation_boxplot');
%% regression of nd_pre with perf
dbfile = 'decoding.db';
conn = sqlite(dbfile); %remember to close it
%
mouse_list = {'Mouse2010', 'Mouse2012', 'Mouse2019', 'Mouse2022',...
'Mouse2023', 'Mouse2024', 'Mouse2026', 'Mouse2028'};
for i = 1:numel(mouse_list)
[nP{i}, mP{i}, eP{i}] = ...
DecodingPlotGenerator.get_errors('NumNeurons', conn,...
mouse_list{i}, 'unshuffled', 'IMSE', 'max');
[nPs{i}, mPs{i}, ePs{i}] = ...
DecodingPlotGenerator.get_errors('NumNeurons', conn,...
mouse_list{i}, 'shuffled', 'IMSE', 'max');
[nPd{i}, mPd{i}, ePd{i}] = ...
DecodingPlotGenerator.get_errors('NumNeurons', conn,...
mouse_list{i}, 'diagonal', 'IMSE', 'max');
%index_of_180 = find(nP{i} == 180,1);
%norm_by = mP{i}(index_of_180);%REPLACE WITH LINEAR FIT
%fit_res = createFit_infoSaturation(nPs{i}, mPs{i});
%norm_by = fit_res.I_0;
fit_res = fit(double(nPs{i}), mPs{i}, 'p1*x', 'StartPoint', 0.002);
norm_by(i) = fit_res.p1;
mPs_normed{i} = mPs{i} ./ norm_by(i);
ePs_normed{i} = ePs{i} ./ norm_by(i);
%fit_res = createFit_infoSaturation(double(nP{i}), mP{i});
%norm_by(i) = fit_res.I_0;
%fprintf('s I_0: %f\t us I_0: %f\n', norm_by_s(i), norm_by(i));
mP_normed{i} = mP{i} ./ norm_by(i);
eP_normed{i} = eP{i} ./ norm_by(i);
mPd_normed{i} = mPd{i} ./ norm_by(i);
ePd_normed{i} = ePd{i} ./ norm_by(i);
%calculating noise props `res` variable
[source_path, mouse_name] = DecodeTensor.default_datasets(i);
opt = DecodeTensor.default_opt;
opt.restrict_trials = -1;
[T, d] = DecodeTensor.tensor_loader(source_path, mouse_name, opt);
res = DecodeTensor.noise_properties(T, d, true); %true for using_corr
q__ = cell2mat(res.nd_pre(:)) ./ cell2mat(res.nd_pre_s(:));
sh_by_unsh(i) = mean(q__);
sh_by_unsh_errbs(i) = std(q__) ./ sqrt(length(q__));
RMS_noise_corr(i) = res.RMS_noise_corr;
RMS_noise_corr_shuf(i) = res.RMS_noise_corr_shuf;
%^ use this to explain that v
shuffle_effective_neurons_change(i) = mPs_normed{i}(end) - mP_normed{i}(end);
shuffle_effective_neurons_change_errbs(i) = sqrt(ePs_normed{i}(end).^2 + eP_normed{i}(end).^2);
end
%%
figure;
scatter(sh_by_unsh, shuffle_effective_neurons_change, 4, 'k','filled');
[fitresult, gof] = fit(sh_by_unsh.', shuffle_effective_neurons_change.', 'poly1');
hold on;
plot(fitresult, 'k'); legend off
text(6.5, 150, sprintf('adj. R^2=%.2f', gof.adjrsquare));
xlabel(sprintf('Unshuf./Shuf. noise\nvariance ratio'));
ylabel(sprintf('\\Delta1/MSE\nin units of cells'));
figure_format;
print_svg('noise_improvement_regression');
conn.close;
%%
figure;
xlabel 'RMS noise correlation ratio'
ylabel(sprintf('\\Delta1/MSE\nin units of cells'));
figure_format;
[xData, yData] = prepareCurveData(RMS_noise_corr./RMS_noise_corr_shuf, shuffle_effective_neurons_change);
%plot(RMS_noise_corr./RMS_noise_corr_shuf, shuffle_effective_neurons_change, 'o')
%text(RMS_noise_corr./RMS_noise_corr_shuf+0.005, shuffle_effective_neurons_change+10, mouse_list)
%refline;
scatter(xData, yData, 4, 'k', 'filled');
[fitresult, gof] = fit(xData, yData, 'poly1');
hold on;
plot(fitresult, 'k'); legend off
text(1.7, 400, sprintf('adj. R^2=%.2f', gof.adjrsquare));
xlabel 'RMS noise correlation ratio'
ylabel(sprintf('\\Delta1/MSE\nin units of cells'));
figure_format;
print_svg('RMS_noise_corr_bad_regression');
%% decoding from PLS vs number of dimensions
o = DecodeTensor(4);
n_reps = 20;
dim_list = [1:10, 15, 20, 30, 50, 100, 200, 300, 400, 497];
clear me mse model me_s mse_s model_s me_p mse_p model_p me_sp mse_sp model_sp
for rep = 1:n_reps
[me(rep), mse(rep), ~, ~, model{rep}] = o.PLS_decode(-1, false, [], []);
fprintf('no pls: err: %.2f\n', me(rep));
[me_s(rep), mse_s(rep), ~, ~, model_s{rep}] = o.PLS_decode(-1, true, [], []);
fprintf('no pls: err: %.2f (shuf)\n', me_s(rep));
parfor d_i = 1:numel(dim_list)
d = dim_list(d_i);
[me_p(rep,d_i), mse_p(rep,d_i), ~, ~, model_p{rep,d_i}] = o.PLS_decode(d, false, [], []);
fprintf('pls %dd: err: %.2f\n', d, me_p(rep,d_i));
[me_sp(rep,d_i), mse_sp(rep,d_i), ~, ~, model_sp{rep,d_i}] = o.PLS_decode(d, true, [], []);
fprintf('pls %dd: err: %.2f (shuf)\n', d, me_sp(rep,d_i));
end
end
disp(me);
%% saving results
save decoding_pls_dims.mat dim_list me mse model me_s mse_s model_s me_p mse_p model_p me_sp mse_sp model_sp
%% plotting: only 10 reps
figure;
sum_stats = {@mean, @(x)std(x)./sqrt(size(x,1)).*norminv((1+0.95)/2)};
shadedErrorBar(dim_list, 1./mse_p(1:10,:), sum_stats, 'lineprops', 'b');
shadedErrorBar(dim_list, 1./repmat(mse(1:10)', 1, numel(dim_list)), sum_stats, 'lineprops', 'b:');
hold on;
shadedErrorBar(dim_list, 1./mse_sp(1:10,:), sum_stats, 'lineprops', 'r');
shadedErrorBar(dim_list, 1./repmat(mse_s(1:10)', 1, numel(dim_list)), sum_stats, 'lineprops', 'r:');
set(gca, 'XScale', 'log');
xlabel 'PLS dimension'
ylabel '1/MSE (cm^{-2})'
print_svg('decode_from_PLS');
%%
figure;
sum_stats = {@mean, @(x)std(x)./sqrt(size(x,1)).*norminv((1+0.95)/2)};
shadedErrorBar(dim_list, me_p(1:10,:), sum_stats, 'lineprops', 'b');
shadedErrorBar(dim_list, repmat(me(1:10)', 1, numel(dim_list)), sum_stats, 'lineprops', 'b:');
hold on;
shadedErrorBar(dim_list, me_sp(1:10,:), sum_stats, 'lineprops', 'r');
shadedErrorBar(dim_list, repmat(me_s(1:10)', 1, numel(dim_list)), sum_stats, 'lineprops', 'r:');
set(gca, 'XScale', 'log');
set(gca, 'YScale', 'log');
xlabel 'PLS dimension'
ylabel 'Mean error (cm)'
print_svg('decode_from_PLS_mean_err');
%%
o = DecodeTensor(8);
[my_me, my_mse, ~, ~, my_model] = o.PLS_decode(-1, false, [], []);
fprintf('learned unshuf\n');
%[my_me_p, my_mse_p, ~, ~, my_model_p, stats] = o.PLS_decode(497, false, [], []);
[my_me_s, my_mse_s, ~, ~, my_model_s] = o.PLS_decode(-1, true, [], []);
fprintf('learned shuf\n');
%%
%signal_direction = diff(mean(o.data_tensor(:,:, o.tr_dir==1),3),1,2);
[X, ks] = DecodeTensor.tensor2dataset(o.data_tensor, o.tr_dir);
clear b_bs b_s bs_s r_s
for b = 1:o.opt.n_bins-1
f_bin = 2*b-1; f_bin_next = f_bin+2;
learner_index = find((my_model.CodingMatrix(f_bin,:)~=0) &...
(my_model.CodingMatrix(f_bin_next,:)~=0));
Beta = my_model.BinaryLearners{learner_index}.Beta;
Beta_s = my_model_s.BinaryLearners{learner_index}.Beta;
signal_dir = mean(X(ks==f_bin_next,:)) - mean(X(ks==f_bin,:));
b_bs(b) = angle_v(Beta, Beta_s, true);
b_s(b) = angle_v(Beta, signal_dir, true);
bs_s(b) = angle_v(Beta_s, signal_dir, true);
r_s(b) = angle_v(randn(size(X,2),1), signal_dir, true);
end
figure;
subplot(2,1,1);
plot(b_bs, 'DisplayName', 'Unshuf vs Shuf');
hold on;
plot(b_s, 'DisplayName', 'Unshuf vs \DeltaSignal');
plot(bs_s, 'DisplayName', 'Shuf vs \DeltaSignal');
plot(r_s, 'DisplayName', 'Random vs \DeltaSignal');
legend Location best
ylim([0 90]);
xlabel 'Position bin'
ylabel(sprintf('Angle between\nclassifiers (degrees)'));
for b = 1:o.opt.n_bins-1
f_bin = 2*b; f_bin_next = f_bin+2;
learner_index = find((my_model.CodingMatrix(f_bin,:)~=0) &...
(my_model.CodingMatrix(f_bin_next,:)~=0));
Beta = my_model.BinaryLearners{learner_index}.Beta;
Beta_s = my_model_s.BinaryLearners{learner_index}.Beta;
signal_dir = mean(X(ks==f_bin_next,:)) - mean(X(ks==f_bin,:));
b_bs(b) = angle_v(Beta, Beta_s, true);
b_s(b) = angle_v(Beta, signal_dir, true);
bs_s(b) = angle_v(Beta_s, signal_dir, true);
r_s(b) = angle_v(randn(size(X,2),1), signal_dir, true);
end
subplot(2,1,2);
plot(b_bs, 'DisplayName', 'b\_bs');
hold on;
plot(b_s, 'DisplayName', 'b\_s');
plot(bs_s, 'DisplayName', 'bs\_s');
plot(r_s, 'DisplayName', 'r\_s');
%legend;
ylim([0 90]);
xlabel 'Position bin'
ylabel(sprintf('Angle between\nclassifiers (degrees)'));
%% growth of signal and noise as a function of number of neurons
dm2 = cell(10,1); sm = dm2; sms = dm2;
progressbar('mouse', 'nsize', 'rep');
for m_i = 1:10
d = DecodeTensor(m_i);
n_max = size(d.data_tensor,1);
n_sizes = [1 (30:30:n_max) n_max];
n_sizes_save{m_i} = n_sizes;
n_reps = 20;
%dm2 = zeros(n_reps, numel(n_sizes)); sm = dm2; sms = dm2;
for n_i = 1:numel(n_sizes)
for i = 1:n_reps
[dm2{m_i}(i, n_i), sm{m_i}(i, n_i), sms{m_i}(i, n_i)] = d.signal_and_noise_descriptors(n_sizes(n_i));
progressbar([],[],i/n_reps);
end
fprintf('Done %d of %d\n', n_sizes(n_i), n_sizes(end));
progressbar([],n_i/numel(n_sizes));
end
progressbar(m_i/10);
end
%%
figure;
for m_i = 6
Utils.neuseries(n_sizes_save{m_i}, dm2{m_i}, 'k'); hold on;
Utils.neuseries(n_sizes_save{m_i}, sm{m_i}, 'b');
Utils.neuseries(n_sizes_save{m_i}, sms{m_i}, 'r');
end
xlabel 'Number of cells'
ylabel(sprintf('Population vector\ndistance'));
%legend '(\Delta\mu)^2' '\sigma^2 along \Delta\mu' '\sigma^2 along \Delta\mu (Shuffled)'
text(20, 2, '(\Delta\mu)^2', 'Color', 'k', 'HorizontalAlignment', 'left');
text(20, 2.5, '\sigma^2 along \Delta\mu', 'Color', 'b', 'HorizontalAlignment', 'left');
text(20, 3, '\sigma^2 along \Delta\mu (Shuffled)', 'Color', 'r', 'HorizontalAlignment', 'left');
figure_format;
print_svg('signal_and_noise_growth');
%% only mus
figure;
for m_i = 1:10
Utils.neuseries(n_sizes_save{m_i}, dm2{m_i}, 'k'); hold on;
end
xlabel 'Number of cells'
ylabel('(\Delta\mu)^2');
%figure_format;
%% normed to maximal deltamu2 value
figure;
for m_i = [3 6 7 4 5 10]
[dm2_slope(m_i), dm2_conf(m_i)] = Utils.fitaline(n_sizes_save{m_i}, dm2{m_i}, cutoff_n);
v = dm2_slope(m_i);%mean(dm2{m_i}(:,end))./n_sizes_save{m_i}(end);
%v = 1;
Utils.neuseries(n_sizes_save{m_i}, dm2{m_i}./v, 'k'); hold on;
Utils.neuseries(n_sizes_save{m_i}, sm{m_i}./v, 'b');
Utils.neuseries(n_sizes_save{m_i}, sms{m_i}./v, 'r');
end
xlabel 'Number of cells'
ylabel(sprintf('Distance\n(In units of cells)'));
%axis equal
text(20, 370, '(\Delta\mu)^2', 'Color', 'k', 'HorizontalAlignment', 'left');
text(20, 470, '\sigma^2 along \Delta\mu', 'Color', 'b', 'HorizontalAlignment', 'left');
text(20, 570, '\sigma^2 along \Delta\mu (Shuffled)', 'Color', 'r', 'HorizontalAlignment', 'left');
figure_format;
print_svg('signal_and_noise_growth');
%% fitted slopes:
cutoff_n = 100;
for m_i = 1:10
%v = mean(dm2{m_i}(:,end))./n_sizes_save{m_i}(end);
[dm2_slope(m_i), dm2_conf(m_i)] = Utils.fitaline(n_sizes_save{m_i}, dm2{m_i}, cutoff_n);
[sm_slope(m_i), sm_conf(m_i)] = Utils.fitaline(n_sizes_save{m_i}, sm{m_i}./dm2_slope(m_i), cutoff_n);
[sms_slope(m_i), sms_conf(m_i)] = Utils.fitaline(n_sizes_save{m_i}, sms{m_i}./dm2_slope(m_i), cutoff_n);
[sms_intercept(m_i), sms_intercept_conf(m_i)] = Utils.fitaline(n_sizes_save{m_i}, sms{m_i}./dm2_slope(m_i), cutoff_n, true);
end
figure;
ballnstick('Unshuffled', 'Shuffled', sm_slope, sms_slope, sm_conf, sms_conf);
line(xlim, [1 1], 'Color', 'k', 'LineStyle', ':');
ylim([-Inf Inf]);
ylabel(sprintf('\\sigma^2 along \\Delta\\mu\nrate of change'));
figure_format;
print_svg('rate_of_change_of_sigma2');
%% TODO: same thing as cell above, but for 107 sessions, from signal_and_noise_final.mat
SnN = load('signal_and_noise_final.mat');
n_sess = length(SnN.dm2_full);
cutoff_n = 100;
dm2_slope = zeros(1,n_sess); dm2_conf = dm2_slope; sm_slope = dm2_slope; sm_conf = dm2_slope; sms_slope = dm2_slope; sms_conf = dm2_slope;
for m_i = 1:n_sess
n_sizes = SnN.n_sizes_full{m_i};
dm2 = SnN.dm2_full{m_i};
sm = SnN.sm_full{m_i};
sms = SnN.sms_full{m_i};
[dm2_slope(m_i), dm2_conf(m_i)] = Utils.fitaline(n_sizes, dm2, cutoff_n);
[sm_slope(m_i), sm_conf(m_i)] = Utils.fitaline(n_sizes, sm./dm2_slope(m_i), cutoff_n);
[sms_slope(m_i), sms_conf(m_i)] = Utils.fitaline(n_sizes, sms./dm2_slope(m_i), cutoff_n);
end
%%
mouse_ids = cellfun(@(x)x(17:25), sheet_paths, 'UniformOutput', false);
mouse_ids = mouse_ids(sheet_paths_filt);
high_conf_filt = (sm_conf < 0.1) & (sms_conf < 0.1); h_ = high_conf_filt;
figure;
ballnstick('Unshuffled', 'Shuffled', sm_slope(h_), sms_slope(h_),...
sm_conf(h_), sms_conf(h_), 'scatter', true,...
'coloring', mouse_ids(h_), 'err_scale', 0.05);
line(xlim, [1 1], 'Color', 'k', 'LineStyle', ':');
ylim([-Inf Inf]);
ylabel(sprintf('\\sigma^2 along \\Delta\\mu\nrate of change'));
figure_format;
print_svg('rate_of_change_of_sigma2_scatter');
%% signal and noise plots
figure;
[~, ~, sp_indices] = DecodeTensor.special_sess_id_list;
for m_i = sp_indices
[dm2_slope, dm2_conf] = Utils.fitaline(n_sizes_full{m_i}, dm2_full{m_i});
v = dm2_slope;%mean(dm2{m_i}(:,end))./n_sizes_save{m_i}(end);
%v = 1;
if mean(sm_full{m_i}(:,end)./v) > 250
%fprintf('rogue index = %d\n', m_i);
continue;
end
if n_sizes_full{m_i}(end) < 200
continue;
end
fprintf('Including index %d\n', m_i);
Utils.neuseries(n_sizes_full{m_i}, dm2_full{m_i}./v, 'k'); hold on;
Utils.neuseries(n_sizes_full{m_i}, sm_full{m_i}./v, 'b');
Utils.neuseries(n_sizes_full{m_i}, sms_full{m_i}./v, 'r');
end
xlabel 'Number of cells'
ylabel(sprintf('Distance\n(In units of cells)'));
%axis equal
text(20, 370, '(\Delta\mu)^2', 'Color', 'k', 'HorizontalAlignment', 'left');
text(20, 470, '\sigma^2 along \Delta\mu', 'Color', 'b', 'HorizontalAlignment', 'left');
text(20, 570, '\sigma^2 along \Delta\mu (Shuffled)', 'Color', 'r', 'HorizontalAlignment', 'left');
figure_format;
print_svg('signal_and_noise_growth');
%% boxplot of final slope fit
figure;
for s_i = 1:numel(n_sizes_full)
[dm2_slope(s_i), dm2_conf(s_i)] = Utils.fitaline(n_sizes_full{s_i}, dm2_full{s_i});
v = dm2_slope(s_i);
%[changer_fit{s_i}, changer_fit_gof{s_i}] = Utils.fit_slopechanger(n_sizes_full{s_i}, mean(sm_full{s_i})./v);
%[changer_fit_s{s_i}, changer_fit_gof_s{s_i}] = Utils.fit_slopechanger(n_sizes_full{s_i}, mean(sms_full{s_i})./v);
[sm_slope(s_i), sm_conf(s_i)] = Utils.fitaline(n_sizes_full{s_i}, sm_full{s_i}./v, 100);
[sms_slope(s_i), sms_conf(s_i)] = Utils.fitaline(n_sizes_full{s_i}, sms_full{s_i}./v, 100);
end
%%
boxplot([sm_slope; sms_slope]', {'Unshuffled';'Shuffled'});
%%
figure;
ballnstick('Unshuffled', 'Shuffled', sm_slope, sms_slope, sm_conf, sms_conf);
%%bookmark abcdefg
%%
figure;
histogram(sm_slope(h_)); hold on;
histogram(sms_slope(h_));
%% median signal direction loadings
progressbar('Mouse', 'Ensemble Size', 'Samples');
[sess_list, mouse_list] = DecodeTensor.filt_sess_id_list;
n_ = numel(sess_list);
median_loadings = cell(n_,1); median_loadings_s = median_loadings;
for m_i = 1:n_
d = DecodeTensor.cons_filt(m_i);
n_max = size(d.data_tensor,1);
n_sizes = [unique(ceil(10.^(log10(2):0.1:log10(n_max)))) n_max];
n_sizes_save{m_i} = n_sizes;
n_reps = 20;
for n_i = 1:numel(n_sizes)
for i = 1:n_reps
[ml, mls] = d.signal_loadings(n_sizes(n_i));
if length(ml) < 50
ml = [ml zeros(1, 50 - length(ml))];
mls = [mls zeros(1, 50 - length(mls))];
else
ml = ml(1:50);
mls = mls(1:50);
end
%[median_loadings(i, n_i, :), median_loadings_s(i, n_i, :)] = d.signal_loadings(n_sizes(n_i));
median_loadings{m_i}(i, n_i, :) = ml;
median_loadings_s{m_i}(i, n_i, :) = mls;
progressbar([],[],i/n_reps);
end
fprintf('%d:: Done %d of %d\n', m_i, n_sizes(n_i), n_sizes(end));
progressbar([], n_sizes(n_i)/n_sizes(end));
end
progressbar(m_i/n_);
end
%%
figure;
for m_i = 1:10
mean_median_loadings = squeeze(mean(abs(median_loadings{m_i})));
mean_median_loadings_s = squeeze(mean(abs(median_loadings_s{m_i})));
%figure;
subplot(2,10,m_i);
im_data = log10(mean_median_loadings(2:end-1,1:30));
padded_im_data = nan(16 - size(im_data,1), size(im_data,2));
imagesc([im_data;padded_im_data], [-1.6 log10(0.3)]);
%colorbar
%title '|cos(PC, \Delta\mu)|'
ylabel 'Ensemble size'
set(gca, 'FontSize', 6);
set(gca, 'FontName', 'Helvetica LT Std');
set(gca, 'TickLength', [0.02 0.02]);
rectangle('Position',...
0.5+[0 size(im_data,1) size(im_data,2) (16 - size(im_data,1))],...
'FaceColor', 'w', 'EdgeColor', 'k', 'LineStyle', 'none');
set(gca, 'YTickLabel', 30*cellfun(@str2num, get(gca, 'YTickLabel')));
%figure_format([0.8 1.4]);
%box on; colorbar off;
hc = colorbar;
%set(gcf, 'Position', [0 0 1.3 1]);
%print_svg('signal_loadings_by_size');
box off
if m_i > 1
axis off
end
%figure;
subplot(2,10,m_i+10);
im_data = log10(mean_median_loadings_s(2:end-1,1:30));
imagesc([im_data;padded_im_data], [-1.6 log10(0.3)]);
set(gca, 'FontSize', 6);
set(gca, 'FontName', 'Helvetica LT Std');
set(gca, 'TickLength', [0.02 0.02]);
xlabel 'Noise PC'
rectangle('Position',...
0.5+[0 size(im_data,1) size(im_data,2) (16 - size(im_data,1))],...
'FaceColor', 'w', 'EdgeColor', 'k', 'LineStyle', 'none');
set(gca, 'YTickLabel', 30*cellfun(@str2num, get(gca, 'YTickLabel')));
%colorbar
%title '|cos(PC, \Delta\mu)|, Shuffled'
%set(gca, 'XTickLabel', []);
%set(gca, 'YTickLabel', []);
%figure_format([0.8 1.4]);
box off;
if m_i > 1
axis off
end
end
set(gcf, 'Units', 'inches');
set(gcf, 'Position', [8.6146 4.3854 7.5833 3.4896]);
print_svg('signal_loadings_by_size_shuf');
%%
figure;
cutoff_n = 50;
for m_i = 1:10
%subplot(2,5,m_i);
mean_median_loadings = squeeze(mean(median_loadings{m_i}.^2));
mean_median_loadings_s = squeeze(mean(median_loadings_s{m_i}.^2));
eig_index = zeros(1, numel(n_sizes_save{m_i}));
eig_index_s = eig_index;
for e_i = 1:numel(n_sizes_save{m_i})
[~, eig_index(e_i)] = max(mean_median_loadings(e_i, :));
[~, eig_index_s(e_i)] = max(mean_median_loadings_s(e_i,:));
end
fprintf('m_i = %d: ', m_i); disp(eig_index); fprintf(' ; '); disp(eig_index_s);
%Utils.neuseries(n_sizes_save{m_i}, median_loadings{m_i}(:,:,eig_index(end)).^2, 'b');
loadings_by_size = abs(median_loadings{m_i}(:, sub2ind([numel(n_sizes_save{m_i}) 50], 1:numel(n_sizes_save{m_i}), eig_index)));
[loadings_slope(m_i), loadings_conf(m_i)] = Utils.fitaline(log10(n_sizes_save{m_i}), log10(loadings_by_size), log10(cutoff_n));
Utils.neuseries(n_sizes_save{m_i}, loadings_by_size, 'b');
hold on;
%Utils.neuseries(n_sizes_save{m_i}, median_loadings_s{m_i}(:,:,eig_index(end)).^2, 'r');
loadings_by_size_s = abs(median_loadings_s{m_i}(:, sub2ind([numel(n_sizes_save{m_i}) 50], 1:numel(n_sizes_save{m_i}), eig_index_s)));
[loadings_slope_s(m_i), loadings_conf_s(m_i)] = Utils.fitaline(log10(n_sizes_save{m_i}), log10(loadings_by_size_s), log10(cutoff_n));
Utils.neuseries(n_sizes_save{m_i}, loadings_by_size_s, 'r');
plot(1:500, sqrt(0.5)./sqrt(1:500), 'k');
%title(sprintf('m_i = %d', m_i));
set(gca, 'XScale', 'log');
set(gca, 'YScale', 'log');
xlabel 'Number of cells'
ylabel('max_\alpha |cos(PC_\alpha, \Delta\mu)|');
end
xlim([1 500]);
ylim([-Inf 1]);
figure_format([1 1.4]);
print_svg('max_noise_loading');
%%
figure;
ballnstick('Unsh.', 'Sh.', loadings_slope, loadings_slope_s, loadings_conf, loadings_conf_s);
line(xlim-0.5, [0 0], 'Color', 'k', 'LineStyle', '-');
line(xlim, [-0.5 -0.5], 'Color', 'k', 'LineStyle', ':');
ylim([-Inf Inf]);
%ylabel('Slope past 50 cells');
figure_format([0.8 1]/2);
print_svg('max_noise_loading_inset_slope');
%% decoding imse saturation value
figure;
%scatter(I0_fit_value.*N_fit_value, 1./sm_slope, 4, 'b');
limit_uncertainty = sqrt((I0_fit_value.*(N_upper)).^2 + (N_fit_value.*(I0_upper)).^2);
inv_sm_slope_uncertainty = sm_conf ./ sm_slope.^2;
hold on;
errorbar(I0_fit_value.*N_fit_value, 1./sm_slope, inv_sm_slope_uncertainty, inv_sm_slope_uncertainty,...
limit_uncertainty, limit_uncertainty, 'LineStyle', 'none', 'Color', 'b', 'CapSize', 1);
[fitresult, adjr2] = Utils.regress_line(I0_fit_value.*N_fit_value, 1./sm_slope);
h_ = plot(fitresult); legend off
h_.Color = 'b';
text(0.03, 8.5, sprintf('adj. R^2 = %.2f', adjr2));
xlabel 'IMSE limit I_0N';
ylabel(sprintf('Inverse \\sigma^2\nrate of change'));
figure_format;
print_svg('imse_limit_regression');
%% just with N
figure;
scatter(N_fit_value, 1./sm_slope, 40, 'b');
hold on;
errorbar(N_fit_value, 1./sm_slope, inv_sm_slope_uncertainty, inv_sm_slope_uncertainty,...
N_upper, N_upper, 'LineStyle', 'none', 'Color', 'b');
[fitresult, adjr2] = Utils.regress_line(N_fit_value, 1./sm_slope);
plot(fitresult); legend off
text(0.1, 4, sprintf('adj. R^2 = %.2f', adjr2));
xlabel 'N fit value';
ylabel 'Inverse \sigma^2 rate of change';
%% just with I_0
figure;
scatter(I0_fit_value, 1./sm_slope, 40, 'b');
hold on;
errorbar(I0_fit_value, 1./sm_slope, inv_sm_slope_uncertainty, inv_sm_slope_uncertainty,...
I0_upper, I0_upper, 'LineStyle', 'none', 'Color', 'b');
[fitresult, adjr2] = Utils.regress_line(I0_fit_value, 1./sm_slope);
plot(fitresult); legend off
text(6e-4, 4, sprintf('adj. R^2 = %.2f', adjr2));
xlabel 'I_0 fit value';
ylabel 'Inverse \sigma^2 rate of change';
%% junk
hold on;
errorbar(N_fit_value(f_), sm_slope(f_),...
sm_conf(f_), sm_conf(f_), N_lower(f_), N_upper(f_),...
'LineStyle', 'none', 'Color', 'b');
scatter(N_fit_value_s(f_), sms_slope(f_), 40, 'r');
errorbar(N_fit_value_s(f_), sms_slope(f_),...
sms_conf(f_), sms_conf(f_), N_lower_s(f_), N_upper_s(f_),...
'LineStyle', 'none', 'Color', 'r');
set(gca, 'XScale', 'log');
xlabel 'N fit value'
ylabel '\sigma^2 rate of change'
%%
figure;
%scatter(I0_fit_value_s, 1./sms_intercept, 'r');
hold on;
inv_intercept_errb = sms_intercept_conf./sms_intercept.^2;
errorbar(I0_fit_value_s, 1./sms_intercept, inv_intercept_errb, inv_intercept_errb, I0_lower_s, I0_upper_s, 'LineStyle', 'none', 'Color', 'r', 'CapSize', 1);
[fitresult, adjr2] = Utils.regress_line(I0_fit_value_s, 1./sms_intercept);
plot(fitresult); legend off
text(1e-4, 0.055, sprintf('adj. R^2 = %.2f', adjr2));
xlabel 'I_0 fit value'
ylabel 'Asymptotic 1/\sigma^2'
set(gca, 'XTickLabel', arrayfun(@Utils.my_fmt, get(gca, 'XTick') ,'UniformOutput', false));
figure_format;
print_svg('I0_value_regression');
%% sampling issues for estimating N and I0
progressbar('d_neu', 'n_reps');
total_n_neu = 500;
for d_neu = 1:50
for n_reps = 1:1000
my_I0 = 5e-4;
my_N = 100;
my_n_samp = [1, d_neu:d_neu:total_n_neu, total_n_neu];
my_true_IMSE = my_I0 .* my_n_samp ./ (1 + my_n_samp ./ my_N);
noise_level = 0.001*sqrt(20/n_reps);
my_noisy_IMSE = my_true_IMSE + noise_level*randn(size(my_true_IMSE));
[my_fitresult, my_gof] = createFit_infoSaturation(my_n_samp, my_noisy_IMSE);
c_ = confint(my_fitresult);
rep_err(d_neu, n_reps) = c_(end) - my_fitresult.N;
n_calc_reps(d_neu, n_reps) = numel(my_n_samp) * n_reps;
progressbar(d_neu/50, n_reps/1000);
%figure;
%errorbar(my_n_samp, my_noisy_IMSE, noise_level*ones(size(my_true_IMSE)));
end
end
%%
figure;
semilogy(rep_err);
refline(0, 10);
refline(0, 5);