-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpoorboy.py
303 lines (268 loc) · 10.9 KB
/
poorboy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
from pprint import pformat
import yfinance as yf
from datetime import datetime, timedelta
import json
import traceback
import multiprocessing
import yahooquery
from numpy import nan
from pandas import DataFrame
import logging
RETURN_FIELD = "fiveYearAverageReturn"
CORRELATION_FIELD = "Close"
logger = logging.getLogger("poorboy")
def solve_unbounded_knapsack(
profits: list[int], weights: list[int], capacity: int, verbose=False
) -> list[int]:
# Initialize a table to store the maximum value for each subproblem
dp = [[0] * (capacity + 1) for _ in range(len(profits) + 1)]
# Fill the table using dynamic programming
for i in range(1, len(profits) + 1):
for j in range(1, capacity + 1):
if weights[i - 1] <= j:
dp[i][j] = max(
dp[i - 1][j],
profits[i - 1] * (j // weights[i - 1])
+ dp[i - 1][j % weights[i - 1]],
)
else:
dp[i][j] = dp[i - 1][j]
# Backtrack to find the quantities of each object
quantities = [0] * len(profits)
j = capacity
for i in range(len(profits), 0, -1):
if dp[i][j] != dp[i - 1][j]:
quantity = (dp[i][j] - dp[i - 1][j]) // profits[i - 1]
quantities[i - 1] += quantity
j -= weights[i - 1] * quantity
return quantities
class Poorboy:
ticker_cache = None
def download_stock_data(self, ticker_name):
logger.info("Download " + ticker_name)
ticker = yf.Ticker(ticker_name)
yq_ticker = yahooquery.Ticker(ticker_name)
result = ticker.info | {
"history": json.loads(ticker.history(period="5y", interval="1d").to_json())
}
logger.debug(ticker_name)
logger.debug(yq_ticker.fund_profile[ticker_name])
try:
result.update(
{
"netExpenseRatio": yq_ticker.fund_profile[ticker_name]
.get("feesExpensesInvestment")
.get("annualReportExpenseRatio")
}
)
# result.update({"netExpenseRatio": 1})
except AttributeError:
result.update({"netExpenseRatio": None})
import copy
self.ticker_cache[ticker_name] = copy.deepcopy(result)
def calculate_security_buys(
self,
anchor_ticker: str,
total_invest_available: float,
force_refresh_cache=False,
skip_cache_write=False,
stdev_max=99,
) -> DataFrame:
try:
if force_refresh_cache:
self.ticker_cache = multiprocessing.Manager().dict()
else:
with open("ticker_cache.json") as f:
self.ticker_cache = multiprocessing.Manager().dict(
json.loads(f.read())
)
except: # noqa: E722
logger.error(traceback.format_exc())
self.ticker_cache = multiprocessing.Manager().dict()
with open("tickers.txt") as f:
ticker_names = []
for ticker_name in f:
ticker_name = ticker_name.strip()
if (
not ticker_name.startswith("#")
and self.ticker_cache.get(ticker_name) is None
):
ticker_names += [ticker_name]
with multiprocessing.Pool(processes=12) as p:
p.map(self.download_stock_data, ticker_names)
self.ticker_cache = dict(self.ticker_cache)
logger.debug(sorted(self.ticker_cache.keys()))
def set_security_price_field(fields_to_attempt: list):
while len(fields_to_attempt) > 0:
field = fields_to_attempt.pop(0)
# if None in [x.get(field) for _, x in self.ticker_cache.items()]:
if self.ticker_cache[anchor_ticker].get(field) is None:
logger.warning(
"some tickers missing '%s' field, trying different field", field
)
continue
else:
logger.info("using '%s' field for security price", field)
return field
security_price_field = set_security_price_field(
["ask", "close", "open", "navPrice"]
)
# security_price_field = set_security_price_field(["ask"])
# calculate stdev between two numbers
def stdev(a, b):
return round((b - a) ** 2, 8)
logger.debug(pformat(self.ticker_cache[anchor_ticker]))
corr_query = [
(
ticker_name,
DataFrame.from_dict(info.get("history")).corrwith(
DataFrame.from_dict(self.ticker_cache[anchor_ticker]["history"])
),
)
for ticker_name, info in self.ticker_cache.items()
]
corr_query = sorted(corr_query, key=lambda x: x[1].to_dict()[CORRELATION_FIELD])
for x in corr_query:
logger.debug("%s %f", x[0], x[1].to_dict()[CORRELATION_FIELD])
# self.ticker_cache[x[0]]["correlation"] = x[1].to_dict()
self.ticker_cache[x[0]]["correlationFactor"] = x[1].to_dict()[
CORRELATION_FIELD
]
stdev_query = [
(
ticker_name,
stdev(
self.ticker_cache[anchor_ticker]["correlationFactor"],
info.get("correlationFactor", 0),
),
)
for ticker_name, info in self.ticker_cache.items()
# if info.get("correlationFactor") is not None
]
stdev_query = sorted(stdev_query, key=lambda x: x[1], reverse=True)
for x in stdev_query:
self.ticker_cache[x[0]]["stdev"] = x[1]
logger.debug(pformat(stdev_query))
if not skip_cache_write:
try:
with open("ticker_cache.json", "w") as f:
payload = json.dumps(self.ticker_cache, indent=4)
f.write(payload)
except: # noqa: E722
logger.error(traceback.format_exc())
logger.error("couldn't write cache")
SHIFT = 10**2
variance_max = stdev_max**2
logger.debug(pformat(self.ticker_cache[anchor_ticker]))
total_invest_minus_anchor = (
total_invest_available
- int(
total_invest_available
/ self.ticker_cache[anchor_ticker][security_price_field]
)
* self.ticker_cache[anchor_ticker][security_price_field]
)
logger.info("total_invest_minus_anchor %f", total_invest_minus_anchor)
# select tickers to filter here
valid_tickers = {}
for ticker_name, x in self.ticker_cache.items():
if (
x.get(security_price_field)
and x[security_price_field] < total_invest_minus_anchor
and x.get("stdev")
and (
x["stdev"]
< variance_max
# or x[return_field]
# > self.ticker_cache[anchor_ticker][return_field]
)
and datetime.now()
- datetime.fromtimestamp(
x.get("fundInceptionDate", datetime.now().timestamp())
)
> timedelta(weeks=52 * 5)
and x.get("correlationFactor") != nan
# and x.get("netExpenseRatio") < self.ticker_cache[anchor_ticker].get("netExpenseRatio")
):
logger.debug(x["stdev"])
valid_tickers[ticker_name] = x
result = None
try:
profits = [
int((x["stdev"] / SHIFT) ** -1)
# int((x["stdev"] / x["netExpenseRatio"]) ** -1 * SHIFT)
for ticker_name, x in valid_tickers.items()
]
weights = [
int(x[security_price_field] * SHIFT)
for ticker_name, x in valid_tickers.items()
]
n_items = [
int(total_invest_minus_anchor / x[security_price_field])
for ticker_name, x in valid_tickers.items()
]
capacity = int(total_invest_minus_anchor * SHIFT)
logger.debug(pformat([profits, weights, n_items, capacity]))
ks_verbose = True if logger.level == logging.DEBUG else False
# result = solve_bounded_knapsack( profits, weights, n_items, capacity, verbose=ks_verbose)
result = solve_unbounded_knapsack(
profits, weights, capacity, verbose=ks_verbose
)
# result = knapsack(profits, weights).solve(capacity)
except Exception as e:
raise e
logger.debug(list(result))
total_invest_calculated = 0
i = 0
result_df_dict = {
"tickername": [],
"count": [],
security_price_field: [],
RETURN_FIELD: [],
"netExpenseRatio": [],
"correlationFactor": [],
"stdev": [],
}
def add_record_to_df_dict(df_dict, ticker_name, count):
df_dict["tickername"] += [ticker_name]
df_dict["count"] += [count]
df_dict[security_price_field] += [
self.ticker_cache[ticker_name][security_price_field]
]
df_dict[RETURN_FIELD] += [self.ticker_cache[ticker_name].get(RETURN_FIELD)]
df_dict["netExpenseRatio"] += [
self.ticker_cache[ticker_name].get("netExpenseRatio")
]
df_dict["correlationFactor"] += [
self.ticker_cache[ticker_name]["correlationFactor"]
]
df_dict["stdev"] += [
"{:.8f}".format(self.ticker_cache[ticker_name]["stdev"])
]
add_record_to_df_dict(
result_df_dict,
anchor_ticker,
int(
total_invest_available
/ self.ticker_cache[anchor_ticker][security_price_field]
),
)
total_invest_calculated += (
int(
total_invest_available
/ self.ticker_cache[anchor_ticker][security_price_field]
)
* self.ticker_cache[anchor_ticker][security_price_field]
)
for ticker_name in [ticker_name for ticker_name, x in valid_tickers.items()]:
if result[i] > 0:
logger.debug("total_invest_calculated %f", total_invest_calculated)
add_record_to_df_dict(result_df_dict, ticker_name, result[i])
total_invest_calculated += (
result[i] * self.ticker_cache[ticker_name][security_price_field]
)
i += 1
result_df = DataFrame(result_df_dict)
logger.info("total_invest_calculated %f", total_invest_calculated)
logger.info("cash_remaining %f", total_invest_available - total_invest_calculated)
return result_df