-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpackephys.m
383 lines (355 loc) · 14.9 KB
/
packephys.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
% Adam Packer
% February 11th, 2007
% Based on Toledo Rodriguez, Markram etc genetics predicts ephys
% (all of markram's e1-e61 params are included)
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Choose and open file
function [Ephys]=packephys(fullpath)
fid=fopen(fullpath);
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Read in rate, number of channels, and channel names
rate=fread(fid,1,'float32','b');
numchans=fread(fid,1,'float32','b');
for i=1:numchans;
number_of_characters=fread(fid,1,'float32','b');
channelname{i}=[];
for j=1:number_of_characters
channelname{i}=[channelname{i}, strrep(fread(fid,1,'float32=>char', 'b'),' ','')];
end
end
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Read in hardware channel ('HWchan') and units if available (*.paq only)
[pathstr, name, ext, versn] = fileparts(fullpath);
if strcmp(ext,'.paq')
for k=1:numchans
number_of_characters=fread(fid,1,'float32','b');
HWchan{k}=[];
for m=1:number_of_characters
HWchan{k}=[HWchan{k}, strrep(fread(fid,1,'float32=>char','b'),' ','')];
end
end
for n=1:numchans
number_of_characters=fread(fid,1,'float32','b');
units{n}=[];
for q=1:number_of_characters
units{n}=[units{n}, strrep(fread(fid,1,'float32=>char','b'),' ','')];
end
end
elseif strcmp(ext,'.bin')
for k=1:numchans
HWchan{k}='unknown';
units{k}='unknown';
end
end
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Get filesize and fposition (which should be after all header info)
dirinfo=dir(pathstr);
for n=1:size(dirinfo);
if strcmp(dirinfo(n).name,[name ext]);
filesize=dirinfo(n).bytes;
end
end
fposition=ftell(fid);
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Read in data
fseek(fid,fposition,'bof');
data=fread(fid,[numchans,filesize/numchans],'*float32','b');
data=data';
fclose(fid);
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Setup chunking data
% Multiply by 2 to transform from output to input sampling rate (5 kHz to
% 10 kHz) Also always take 500 ms on the front and back of each chunk for
% pre and post injection calculations.
% AP_Drop=2*(2500:0.5:9999.5);
% AP_Waveform=2*(10000:0.5:15249.5);
% IV=[];
% for a=0:10
% IVstart=15250+2*a*5000;
% IVstop=20249+(2*a+1)*5000;
% IV(a+1,:)=2*[IVstart:0.5:IVstop+0.5];
% end
% InputR_HypPre=2*[125250:0.5:133584.5];
% InputR_HypTest=2*[128585:0.5:134584.5];
% InputR_HypPost=2*[129585:0.5:135249.5];
% InputR_DepPre=2*[135250:0.5:143584.5];
% InputR_DepTest=2*[138585:0.5:144584.5];
% InputR_DepPost=2*[139585:0.5:145249.5];
% Delta=2*[145250:0.5:150259.5];
% Ramp=2*[150260:0.5:157759.5];
% Discharge=[];
% for b=0:10
% DischargeStart=157760+b*6000;
% DischargeStop=162759+b*6000+1000;
% Discharge(b+1,:)=2*[DischargeStart:0.5:DischargeStop+0.5];
% end
% The following are WITHOUT pre and post 500 ms
% AP_Drop=2*[5000:0.5:7499.5];
% AP_Waveform=2*2*[12500:0.5:12749.5];
% IV=[];
% for a=0:10
% IVstart=17750+2*a*5000;
% IVstop=17749+(2*a+1)*5000;
% IV(a+1,:)=2*[IVstart:0.5:IVstop+0.5];
% end
% InputR_HypPre=2*[127750:0.5:131084.5];
% InputR_HypTest=2*[131085:0.5:132084.5];
% InputR_HypPost=2*[132085:0.5:132749.5];
% InputR_DepPre=2*[137750:0.5:141084.5];
% InputR_DepTest=2*[141085:0.5:142084.5];
% InputR_DepPost=2*[142085:0.5:142749.5];
% Delta=2*[147750:0.5:147759.5];
% Ramp=2*[152760:0.5:155259.5];
% Discharge=[];
% for b=0:10
% DischargeStart=160260+b*6000;
% DischargeStop=160259+b*6000+1000;
% Discharge(b+1,:)=2*[DischargeStart:0.5:DischargeStop+0.5];
% end
%File indices BY ERV fixed for AP
Baseline=[1:5000];
AP_Drop=[567020:572020];
AP_Waveform=[582020:582520];
% ERV IV
% IV=repmat((10000:20000:210000)', 1, 11000)+repmat(0:1:10999, 11,1);
% IV(6,:)=[]; %Eliminates the "no current" section
% AdamP IV
IV=[];
for a=0:10
IVstart=5000+a*10000;
IVstop=10000+a*10000;
IV(a+1,:)=2*[IVstart:0.5:IVstop];
end
InputR_Hyp=[230005:240005];
InputR_HypTest=[236675:238675];
InputR_Dep=2*[250005:260005];
InputR_DepTest=2*[256674:258675];
Delta=[270030:272000];
PulseBeforeRamp=[295025:295525];
Ramp=[320000:325030];
% ERV Discharge
% Discharge=[[335025 347025:15000:482025]' [337025 352025:15000:487025]'];
% AdamP Discharge
Discharge=[];
for b=0:9
DischargeStart=347025+b*15000;
DischargeStop=352025+b*15000;
Discharge(b+1,:)=DischargeStart:1:DischargeStop;
end
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Find resting membrane potential if abs(holding current) < 5 pA
% if abs(mean(data(1:9999,2)))>5
% Ephys.RestingPotential=[];
% else
% Ephys.RestingPotential=mean(data(1:9999,1));
% end
%Baseline or average resting potential BY ERV
try
Ephys.Baseline=mean(data(Baseline)); %THIS IS AN OUTPUT
Ephys.BaselineShift=[mean(data(Baseline(1:5000))) mean(data(Baseline(5001:end)))]; %THIS IS AN OUTPUT
catch
Ephys.Baseline=str2double('NaN');
Ephys.BaselineShift=str2double('NaN');
end
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% AP_Drop parameters
% Find APs and get their amplitudes
AP_Drop_ApIds=findaps2(data(AP_Drop,1));
AP_Drop_Amps=data(AP_Drop(AP_Drop_ApIds));
Ephys.InitAPDrop=AP_Drop_Amps(1)-AP_Drop_Amps(2);
Ephys.AP1ToSteadyDrop=AP_Drop_Amps(1)-AP_Drop_Amps(end);
Ephys.AP2ToSteadyDrop=AP_Drop_Amps(2)-AP_Drop_Amps(end);
% Find the change in amplitudes and get the absolute maximum change
AP_Drop_ChngAmps=diff(AP_Drop_Amps);
AP_Drop_MaxChngAmpIDX=find(max(abs(AP_Drop_ChngAmps)));
Ephys.MaxRateAPChange=AP_Drop_ChngAmps(AP_Drop_MaxChngAmpIDX);
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% AP_Waveform parameters
% Find when APs start (onset) and stop based on a change > 50 mV/ms
AP_Waveform_Onsets=find(diff(data(AP_Waveform,1))>5);
pts2kill=[];
for i=2:length(AP_Waveform_Onsets);
if AP_Waveform_Onsets(i)==AP_Waveform_Onsets(i-1)+1;
pts2kill=[pts2kill i];
end
end
AP_Waveform_Onsets(pts2kill)=[];
AP_Waveform_Onset_Voltages=data(AP_Waveform(AP_Waveform_Onsets));
AP_Waveform_Stops=[];
for i=1:length(AP_Waveform_Onsets);
AP_Waveform_Stops=[AP_Waveform_Stops AP_Waveform_Onsets(i)+find(data(AP_Waveform(AP_Waveform_Onsets(i)):end,1)<AP_Waveform_Onset_Voltages(i),1)];
end
% Calculate Amplitude, Half Amplitude, and fAHP for AP 1 and 2
AP_Waveform1=data(AP_Waveform(AP_Waveform_Onsets(1):AP_Waveform_Stops(1)),1);
AP_Waveform2=data(AP_Waveform(AP_Waveform_Onsets(2):AP_Waveform_Stops(2)),1);
[AP_Waveform1_Amp,AP_Waveform1_AmpIdx]=max(AP_Waveform1);
[AP_Waveform2_Amp,AP_Waveform2_AmpIdx]=max(AP_Waveform2);
AP_Waveform1_HalfAmp=(AP_Waveform1_Amp-AP_Waveform_Onset_Voltages(1))/2;
AP_Waveform2_HalfAmp=(AP_Waveform2_Amp-AP_Waveform_Onset_Voltages(2))/2;
AP_Waveform1_HalfAmpOnIdx=find(AP_Waveform1(1:AP_Waveform1_AmpIdx)>AP_Waveform1(1)+AP_Waveform1_HalfAmp,1);
AP_Waveform2_HalfAmpOnIdx=find(AP_Waveform2(1:AP_Waveform2_AmpIdx)>AP_Waveform2(1)+AP_Waveform2_HalfAmp,1);
AP_Waveform1_HalfAmpOffIdx=AP_Waveform1_AmpIdx + find(AP_Waveform1(AP_Waveform1_AmpIdx:end)<AP_Waveform1(1)+AP_Waveform1_HalfAmp,1);
AP_Waveform2_HalfAmpOffIdx=AP_Waveform2_AmpIdx + find(AP_Waveform2(AP_Waveform2_AmpIdx:end)<AP_Waveform2(1)+AP_Waveform2_HalfAmp,1);
AP_Waveform1_fAHP=min(data(AP_Waveform(AP_Waveform_Stops(1):AP_Waveform_Onsets(2))));
try
AP_Waveform2_fAHP=min(data(AP_Waveform(AP_Waveform_Stops(2):AP_Waveform_Onsets(3))));
catch
AP_Waveform2_fAHP=min(data(AP_Waveform(AP_Waveform_Stops(2):end)));
end
% Write out params for AP 1
Ephys.AP1Amp=AP_Waveform1_Amp;
Ephys.AP1Duration=(AP_Waveform_Stops(1)-AP_Waveform_Onsets(1))/10;
Ephys.AP1HalfWidth=(AP_Waveform1_HalfAmpOffIdx-AP_Waveform1_HalfAmpOnIdx)/10;
Ephys.AP1RiseTime=(AP_Waveform1_AmpIdx-1)/10;
Ephys.AP1FallTime=(1+AP_Waveform_Stops(1)-(AP_Waveform1_AmpIdx+AP_Waveform_Onsets(1)))/10;
Ephys.AP1RiseRate=Ephys.AP1Amp/Ephys.AP1RiseTime;
Ephys.AP1FallRate=Ephys.AP1Amp/Ephys.AP1FallTime;
Ephys.AP1fAHP=AP_Waveform_Onset_Voltages(1)-AP_Waveform1_fAHP;
% Write out params for AP 2
Ephys.AP2Amp=AP_Waveform2_Amp;
Ephys.AP2Duration=(AP_Waveform_Stops(2)-AP_Waveform_Onsets(2))/10;
Ephys.AP2HalfWidth=(AP_Waveform2_HalfAmpOffIdx-AP_Waveform2_HalfAmpOnIdx)/10;
Ephys.AP2RiseTime=(AP_Waveform2_AmpIdx-1)/10;
Ephys.AP2FallTime=(1+AP_Waveform_Stops(2)-(AP_Waveform2_AmpIdx+AP_Waveform_Onsets(2)))/10;
Ephys.AP2RiseRate=Ephys.AP2Amp/Ephys.AP2RiseTime;
Ephys.AP2FallRate=Ephys.AP2Amp/Ephys.AP2FallTime;
Ephys.AP2fAHP=AP_Waveform_Onset_Voltages(2)-AP_Waveform2_fAHP;
% Write out params for changes between AP 1 and AP 2
Ephys.AP12AmpPercChng=(Ephys.AP1Amp-Ephys.AP2Amp)/Ephys.AP1Amp*100;
Ephys.AP12DurationPercChng=(Ephys.AP1Duration-Ephys.AP2Duration)/Ephys.AP1Duration*100;
Ephys.AP12HalfWidthPercChng=(Ephys.AP1HalfWidth-Ephys.AP2HalfWidth)/Ephys.AP1HalfWidth*100;
Ephys.AP12RiseRatePercChng=(Ephys.AP1RiseRate-Ephys.AP2RiseRate)/Ephys.AP1RiseRate*100;
Ephys.AP12FallRatePercChng=(Ephys.AP1FallRate-Ephys.AP2FallRate)/Ephys.AP1FallRate*100;
Ephys.AP12fAHPPercChng=(Ephys.AP1fAHP-Ephys.AP2fAHP)/Ephys.AP1fAHP*100;
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% IV
% Voltage peaks are min/max depending on whether hyperpol/depolar injection
% Voltage steady state is last 100ms of injection
% Current is mean of the current injection
IV_Vpeak=zeros(1,11);
IV_Vsteady=zeros(1,11);
IV_I=zeros(1,11);
% Negative current injections
for i=1:5
IV_Vpeak(i)=min(data(IV(i,:),1));
IV_Vsteady(i)=mean(data(IV(i,9000:10000),1));
IV_I(i)=mean(data(IV(i,5000:9000),2));
end
% Positive current injections
for i=7:11
IV_Vpeak(i)=max(data(IV(i,:),1));
IV_Vsteady(i)=mean(data(IV(i,9000:10000),1));
IV_I(i)=mean(data(IV(i,5000:9000),2));
end
% Delete middle non-existent IV injection
IV_Vpeak(6)=[];
IV_Vsteady(6)=[];
IV_I(6)=[];
IV_Rpeak=(IV_Vpeak./IV_I(1))*1000;
IV_Rsteady=(IV_Vsteady./IV_I(1))*1000;
IV_Sag=IV_Vpeak-IV_Vsteady;
% Calculate input resistance from first pulse only
% Multiply by 1000 to convert to megaohms
Ephys.InputRPeak=1000*(IV_Vpeak(1)-Ephys.Baseline)/IV_I(1);
Ephys.InputRSteady=1000*(IV_Vsteady(1)-Ephys.Baseline)/IV_I(1);
Ephys.RectificationPeak=(IV_Rpeak(1)-abs(IV_Rpeak(10)))/IV_Rpeak(1);
Ephys.RectificationSteady=(IV_Rsteady(1)-abs(IV_Rsteady(10)))/IV_Rsteady(1);
Ephys.Sag=abs(max(abs(IV_Sag)));
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Delta
% Fit voltage response to a short current step to a single exponential
% in order to get membrane time constant tau
% This calculation is probably faulty because the 'capacitor' (in this
% case, the membrane) will not have fully charged within such a short time!
% AdamP code
% DeltaV=data(Delta(:,1));
% DeltaT=(0.1:0.1:length(DeltaV)/10)';
% betaa=nlinfit(DeltaT,DeltaV-max(DeltaV),'acq_single_exp',[min(DeltaV) 1]);
% Ephys.DeltaTau=betaa(2);
% ERV code
DeltaV=data(Delta(1,:));
FlippedDeltaV=-DeltaV;
ToFit=FlippedDeltaV-min(FlippedDeltaV);
[yhat, Ephys.tau]=single_exp(ToFit,10000);
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Ramp
Ramp_APIdx=findaps2(data(Ramp,1));
Ramp_Thresh=data(Ramp(Ramp_APIdx(1)),2);
Ramp_AHP1=min(data(Ramp(Ramp_APIdx(1):Ramp_APIdx(2))));
Ramp_AP_DiffGreater5=find(diff(data(Ramp,1))>5);
Ramp_Onset1Voltage=data(Ramp(Ramp_AP_DiffGreater5));
Ephys.RampThresh=Ramp_Thresh;
Ephys.RampfAHP=Ramp_Onset1Voltage(1)-Ramp_AHP1;
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% sAHP/Discharge
% Get info about APs and AHP
Pattern_AllISIs=[];
for i=1:10
Pattern_APIdx{i}=findaps2(data(Discharge(i,:),1));
Pattern_AP1Delay(i)=(Pattern_APIdx{i}(1)-5000)/10;
Pattern_AP2Delay(i)=(Pattern_APIdx{i}(2)-5000)/10;
Pattern_ISIs{i}=diff(Pattern_APIdx{i});
Pattern_MeanOfISIs123(i)=(mean(Pattern_ISIs{i}(1:3)))/10;
Pattern_InitISIChange(i)=(Pattern_ISIs{i}(2)-Pattern_ISIs{i}(1))/10;
Pattern_LastISIChange(i)=(Pattern_ISIs{i}(end)-Pattern_ISIs{i}(end-1))/10;
DischargeStop=Discharge(i,end);
[Pattern_AHP(i) Pattern_AHPIdx(i)]=min(data(DischargeStop:DischargeStop+10000,1));
% If the last AP occurs after current injection, set the Offset Time
% for the burst equal to that last AP's index
if Pattern_APIdx{i}(end) > 7000
Pattern_OffsetIdx(i)=Pattern_APIdx{i}(end);
else
Pattern_OffsetIdx(i)=5000;
end
% Pattern_100msAHP(i)=data(Discharge(i,Pattern_OffsetIdx(i)+1000),1);
% Pattern_Baseline(i)=mean(data(Discharge(i,1:5000),1));
% Pattern_InjCurrent(i)=mean(data(Discharge(i,5000:7000),2));
Pattern_NumAPs(i)=length(Pattern_APIdx{i});
Pattern_AllISIs=[Pattern_AllISIs Pattern_ISIs{i}/10];
Pattern_MaxDerivMinusAveDerivISIs(i)=max(diff(Pattern_ISIs{i}))-mean(diff(Pattern_ISIs{i}));
end
% Pattern_sAHP=Pattern_Baseline-Pattern_AHP;
% Ephys.PostBurstMaxAHP=max(Pattern_sAHP);
% Ephys.PostBurst100msAHP=mean(Pattern_100msAHP-Pattern_Baseline);
% Ephys.PostBurstTimeToMaxAHP=mean(((Pattern_AHPIdx+7000)-Pattern_OffsetIdx)/10);
% Ephys.NumSpikesPerPicoAmp=mean(Pattern_NumAPs)/mean(Pattern_InjCurrent);
Ephys.AveDelayToFirstSpike=mean(Pattern_AP1Delay);
Ephys.StdDelayToFirstSpike=std(Pattern_AP1Delay);
Ephys.AveDelayToSecondSpike=mean(Pattern_AP2Delay);
Ephys.StdDelayToSecondSpike=std(Pattern_AP2Delay);
Ephys.AveFirstThreeApISIs=mean(Pattern_MeanOfISIs123);
Ephys.SDFirstThreeApISIs=std(Pattern_MeanOfISIs123);
Ephys.AveInitFiringRateAccom=mean(Pattern_InitISIChange);
Ephys.AveSteadyFiringRateAccom=mean(Pattern_LastISIChange)-Ephys.AveInitFiringRateAccom;
Ephys.ISI_CV=std(Pattern_AllISIs)/mean(Pattern_AllISIs);
Ephys.ISIMedian=median(Pattern_AllISIs);
Ephys.aveMaxDerivMinusAveDerivISIs=(mean(Pattern_MaxDerivMinusAveDerivISIs))/10;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Sub-Subfunction
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% function yhat=single_exp_fun(beta, t)
% f0=beta(1);
% tau=beta(2);
% yhat=f0.*exp(-t./tau);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Subfunction
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [yhat, tau]=single_exp(data, samplerate)
single_exp_fun = @(beta,t) beta(1).*exp(-t./beta(2));
t=(0:1/samplerate:(length(data)/samplerate)-(1/samplerate)).*1000; %Time scale in milliseconds
FittedBetas=nlinfit(t, data,single_exp_fun, [min(data) 1]);
yhat=single_exp_fun(FittedBetas, t);
tau=FittedBetas(2);