-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathminfo.m
274 lines (260 loc) · 9.97 KB
/
minfo.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
function [MI,dof,MInrm,Hu,Hx] = minfo(u,x,nbins,nlags,verb)
% function [MI,dof,MInrm,Hu,Hx] = minfo(u,x,nbins,nlags,verb)
%
% Calculate the pairwise mutual information between rows of u, or between
% rows of u and rows of x if second argument is a matrix. If nlags > 0,
% calculate for lags -nlags:nlags. The output is a matrix of size
% [nu,nx,2*nlags+1] of pairwise mutual information values, with zero lag
% at MI(:,:,nlags+1). Uses nbins bins for pdf of u(i,:), equally spaced
% between min(u(i,:)) and max(u(i,:)), similarly for pdfs of x rows.
%
% Inputs:
% u Matrix (nu by Nu) of nu time series.
%
% x Optional second input matrix (nx by Nx) of nx time
% series. Nx must equal Nu, i.e. all time series must
% have the same length. Enter 0 to bypass in order to
% set nbins or nlags.
%
% nbins Number of bins to use in computing pdfs. Default is
% round(3*log2(1+Nu/10)).
%
% nlags Number of lags (in addition to zero lag) to compute
% mutual information (before and after zero) lag.
% Default is 0.
%
% verb Verbose flag. 1 = verbose (default), 0 = no text output.
%
% Outputs:
% MI If no second input x, or x==0, then MI is an
% (nu by nu by 2*nlags+1) matrix of pairwise mutual
% information between rows of u at lags -nlags to nlags.
% If both inputs u and x are present, then MI is an
% (nu by nx by 2*nlags+1) matrix of pairwise mutual
% information between rows of u and rows of x. For
% example, MI(i,j,nlags+1+g) is the mutual information
% between u(i,1+g:N+g) and u(j,1:N), or between
% u(i,1+g:N+g) and x(j,1:N). So a peak at g+nlags+1 in
% MI(i,j,:) means i lags j by g time points (i leads j by
% -g time points.)
%
% dof Degrees of freedom of MI, which is a chi squared random
% variable. A threshold can be determined at the "p"
% significance level using:
%
% >> T = chi2inv(p,dof) / (2*Nu);
%
% By the Likelihood Ratio Test theorem, 2*Nu*MI is chi
% squared with nbins*(nbins-2). So MI has a mean of
% nbins*(nbins-2)/(2*Nu). If you don't have access to
% chi2inv(), a simple threshold of dof/Nu can be used.
%
% MInrm Matrix (nu by nu by 2*nlags+1) of "normalized" pairwise
% mutual information of rows of u, relative to the
% average of the marginal (non-differential) bin
% entropies. If x argument is present, normalization is
% always with respect to u(i,:).
%
% Hu Vector nu by 1 of differential entropies of rows of u.
%
% Hx Vector nu by 1 of differential entropies of rows of x.
%
varrng = 1;
if nargin < 5
verb = 1;
end
[nu,Nu] = size(u);
if nargin < 3 || isempty(nbins) || nbins == 0
nbins = round(3*log2(1+Nu/10));
end
if nargin < 4 || nlags == 0 || isempty(nlags)
nlags = 0;
end
if nargin >= 2
[nx,Nx] = size(x);
if Nx == 1
MI = zeros(nu,nu,2*nlags+1);
MInrm = zeros(nu,nu,2*nlags+1);
dox = 0;
else
if Nx ~= Nu
error('input time series must be same length');
end
MI = zeros(nu,nx,2*nlags+1);
MInrm = zeros(nu,nx,2*nlags+1);
dox = 1;
end
else
MI = zeros(nu,nu,2*nlags+1);
MInrm = zeros(nu,nu,2*nlags+1);
dox = 0;
end
% bin the time series
if verb
disp('binning the time series ...'); pause(0.1);
end
Hu = zeros(nu,2*nlags+1);
deltau = zeros(nu,1);
for i = 1:nu
if varrng
um = mean(u(i,:));
us = std(u(i,:));
umax = min(max(u(i,:)),um + 5*us);
umin = max(min(u(i,:)),um - 5*us);
else
umax = max(u(i,:));
umin = min(u(i,:));
end
deltau(i) = (umax-umin)/nbins;
u(i,:) = 1 + round((nbins - 1) * (u(i,:) - umin) / (umax - umin));
u(i,:) = min(nbins,u(i,:));
u(i,:) = max(1,u(i,:));
if nlags == 0
pmfr = diff([0 find(diff(sort(u(i,:)))) Nu])/Nu;
Hu(i) = -sum(pmfr.*log(pmfr));
else
for g = 0:nlags
pmfr = diff([0 find(diff(sort(u(i,1+g:Nu)))) (Nu-g)])/(Nu-g);
Hu(i,nlags+1+g) = -sum(pmfr.*log(pmfr));
if g > 0
pmfr = diff([0 find(diff(sort(u(i,1:Nu-g)))) (Nu-g)])/(Nu-g);
Hu(i,nlags+1-g) = -sum(pmfr.*log(pmfr));
end
end
end
end
if dox == 1
Hx = zeros(nx,2*nlags+1);
deltax = zeros(nx,1);
for i = 1:nx
xmax = max(x(i,:));
xmin = min(x(i,:));
deltax(i) = (xmax-xmin)/nbins;
x(i,:) = 1 + round((nbins - 1) * (x(i,:) - xmin) / (xmax - xmin));
if nlags == 0
pmfr = diff([0 find(diff(sort(x(i,:)))) Nx])/Nx;
Hx(i) = -sum(pmfr.*log(pmfr));
else
for g = 0:nlags
pmfr = diff([0 find(diff(sort(x(i,1+g:Nx)))) (Nx-g)])/(Nx-g);
Hx(i,nlags+1+g) = -sum(pmfr.*log(pmfr));
if g > 0
pmfr = diff([0 find(diff(sort(x(i,1:Nx-g)))) (Nx-g)])/(Nx-g);
Hx(i,nlags+1-g) = -sum(pmfr.*log(pmfr));
end
end
end
end
else
Hx = 0;
end
% get pairwise histograms at each lag
if verb
disp('getting pairwise mutual information ...'); pause(0.1);
end
if dox == 0
for i = 1:nu
if i == 1
if verb
disp(['doing ' int2str(i) ' ...']); pause(0.01);
end
tic;
else
t1 = toc; T = t1 * (nu-i+1);
if verb
disp(['doing ' int2str(i) ' ... time rem: ' num2str(T/60) ' m']); pause(0.01);
end
tic;
end
for j = 1:nu
if nlags == 0 % faster if we don't need to compute lag index
if i == j
MI(i,i) = Hu(i);
MInrm(i,i) = 1;
else
pmf2r = diff([0 find(diff(sort(u(i,:)+nbins*(u(j,:)-1)))) Nu])/Nu;
H2 = -sum(pmf2r.*log(pmf2r));
MI(i,j) = Hu(i) + Hu(j) - H2;
MI(j,i) = MI(i,j);
MInrm(i,j) = MI(i,j) / Hu(i);
MInrm(j,i) = MI(j,i) / Hu(j);
end
else
% do zero lag
if i == j
MI(i,i,nlags+1) = Hu(i,nlags+1);
MInrm(i,i,nlags+1) = 1;
else
pmf2r = diff([0 find(diff(sort(u(i,1:Nu)+nbins*(u(j,1:Nu)-1)))) Nu])/Nu;
H2 = -sum(pmf2r.*log(pmf2r));
MI(i,j,nlags+1) = Hu(i,nlags+1) + Hu(j,nlags+1) - H2;
MI(j,i,nlags+1) = MI(i,j,nlags+1);
MInrm(i,j,nlags+1) = MI(i,j,nlags+1) / Hu(i,nlags+1);
MInrm(j,i,nlags+1) = MI(j,i,nlags+1) / Hu(j,nlags+1);
end
for g = 1:nlags
pmf2r = diff([0 find(diff(sort(u(i,1+g:Nu)+nbins*(u(j,1:(Nu-g))-1)))) Nu-g])/(Nu-g);
H2 = -sum(pmf2r.*log(pmf2r));
MI(i,j,nlags+1+g) = Hu(i,nlags+1+g) + Hu(j,nlags+1-g) - (H2 + (nbins^2-1)/2/Nu);
MInrm(i,j,nlags+1+g) = MI(i,j,nlags+1+g) / Hu(i,nlags+1+g);
if i == j
pmf2r = diff([0 find(diff(sort(u(i,1:Nu-g)+nbins*(u(j,1+g:Nu)-1)))) Nu-g])/(Nu-g);
H2 = -sum(pmf2r.*log(pmf2r));
MI(i,j,nlags+1-g) = Hu(i,nlags+1+g) + Hu(j,nlags+1-g) - H2;
MInrm(i,j,nlags+1-g) = MI(i,j,nlags+1-g) / Hu(i,nlags+1-g);
else
MI(j,i,nlags+1-g) = MI(i,j,nlags+1+g);
MInrm(j,i,nlags+1-g) = MI(j,i,nlags+1-g) / Hu(j,nlags+1-g);
end
end
end
end
end
else
for i = 1:nu
if i == 1
if verb
disp(['doing ' int2str(i) ' ...']); pause(0.01);
end
tic;
else
t1 = toc; t0 = t1/(nu-i+2); T = t0 * (nu-i+2)*(nu-i+1)/2;
if verb
disp(['doing ' int2str(i) ' ... time rem: ' num2str(T/60) ' m']); pause(0.01);
end
end
for j = 1:nx
if nlags == 0 % faster if we don't need to compute lag index
pmf2r = diff([0 find(diff(sort(u(i,:)+nbins*(x(j,:)-1)))) Nu])/Nu;
H2 = -sum(pmf2r.*log(pmf2r));
MI(i,j) = Hu(i) + Hx(j) - H2;
MInrm(i,j) = MI(i,j) / Hu(i);
else
for g = 0:nlags
pmf2r = diff([0 find(diff(sort(u(i,1+g:Nu)+nbins*(x(j,1:(Nu-g))-1)))) Nu-g])/(Nu-g);
H2 = -sum(pmf2r.*log(pmf2r));
MI(i,j,nlags+1+g) = Hu(i,nlags+1+g) + Hx(j,nlags+1-g) - H2;
MInrm(i,j,nlags+1+g) = MI(i,j,nlags+1+g) / Hu(i,nlags+1+g);
if g > 0
pmf2r = diff([0 find(diff(sort(u(i,1:(Nu-g))+nbins*(x(j,1+g:Nu)-1)))) Nu-g])/(Nu-g);
H2 = -sum(pmf2r.*log(pmf2r));
MI(i,j,nlags+1-g) = Hu(i,nlags+1-g) + Hx(j,nlags+1+g) - H2;
MInrm(i,j,nlags+1-g) = MI(i,j,nlags+1-g) / Hu(i,nlags+1-g);
end
end
end
end
end
end
Hu = Hu(:,nlags+1);
for i = 1:nu
Hu(i) = Hu(i) + log(deltau(i));
end
if dox == 1
Hx = Hx(:,nlags+1);
for i = 1:nx
Hx(i) = Hx(i) + log(deltax(i));
end
end
dof = nbins*(nbins-2);
end