-
Notifications
You must be signed in to change notification settings - Fork 62
/
Copy pathtest_mask.py
341 lines (282 loc) · 16.1 KB
/
test_mask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
# Author: Anurag Ranjan
# Copyright (c) 2019, Anurag Ranjan
# All rights reserved.
import argparse
import os
from tqdm import tqdm
import numpy as np
from path import Path
from tensorboardX import SummaryWriter
import torch
from torch.autograd import Variable
import models
import custom_transforms
from inverse_warp import pose2flow
from datasets.validation_flow import ValidationMask
from logger import AverageMeter
from PIL import Image
from torchvision.transforms import ToPILImage
from flowutils.flowlib import flow_to_image
from utils import tensor2array
from loss_functions import compute_all_epes
from scipy.ndimage.interpolation import zoom
parser = argparse.ArgumentParser(description='Test IOU of Mask predictions',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--kitti-dir', dest='kitti_dir', type=str, default='/ps/project/datasets/AllFlowData/kitti/kitti2015',
help='Path to kitti2015 scene flow dataset for optical flow validation')
parser.add_argument('--dispnet', dest='dispnet', type=str, default='DispResNet6', choices=['DispNetS', 'DispResNet6', 'DispNetS6'],
help='depth network architecture.')
parser.add_argument('--posenet', dest='posenet', type=str, default='PoseNetB6', choices=['PoseNet6','PoseNetB6', 'PoseExpNet5', 'PoseExpNet6'],
help='pose and explainabity mask network architecture. ')
parser.add_argument('--masknet', dest='masknet', type=str, default='MaskNet6', choices=['MaskResNet6', 'MaskNet6', 'PoseExpNet5', 'PoseExpNet6'],
help='pose and explainabity mask network architecture. ')
parser.add_argument('--flownet', dest='flownet', type=str, default='Back2Future', choices=['FlowNetS', 'Back2Future', 'FlowNetC5','FlowNetC6', 'SpyNet'],
help='flow network architecture.')
parser.add_argument('--THRESH', dest='THRESH', type=float, default=0.94, help='THRESH')
parser.add_argument('--pretrained-disp', dest='pretrained_disp', default=None, metavar='PATH', help='path to pre-trained dispnet model')
parser.add_argument('--pretrained-pose', dest='pretrained_pose', default=None, metavar='PATH', help='path to pre-trained posenet model')
parser.add_argument('--pretrained-flow', dest='pretrained_flow', default=None, metavar='PATH', help='path to pre-trained flownet model')
parser.add_argument('--pretrained-mask', dest='pretrained_mask', default=None, metavar='PATH', help='path to pre-trained masknet model')
parser.add_argument('--nlevels', dest='nlevels', type=int, default=6, help='number of levels in multiscale. Options: 4|5')
parser.add_argument('--dataset', dest='dataset', default='kitti2015', help='path to pre-trained Flow net model')
parser.add_argument('--output-dir', dest='output_dir', type=str, default=None, help='path to output directory')
def main():
global args
args = parser.parse_args()
args.pretrained_disp = Path(args.pretrained_disp)
args.pretrained_pose = Path(args.pretrained_pose)
args.pretrained_mask = Path(args.pretrained_mask)
args.pretrained_flow = Path(args.pretrained_flow)
if args.output_dir is not None:
args.output_dir = Path(args.output_dir)
args.output_dir.makedirs_p()
image_dir = args.output_dir/'images'
gt_dir = args.output_dir/'gt'
mask_dir = args.output_dir/'mask'
viz_dir = args.output_dir/'viz'
image_dir.makedirs_p()
gt_dir.makedirs_p()
mask_dir.makedirs_p()
viz_dir.makedirs_p()
output_writer = SummaryWriter(args.output_dir)
normalize = custom_transforms.Normalize(mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5])
flow_loader_h, flow_loader_w = 256, 832
valid_flow_transform = custom_transforms.Compose([custom_transforms.Scale(h=flow_loader_h, w=flow_loader_w),
custom_transforms.ArrayToTensor(), normalize])
val_flow_set = ValidationMask(root=args.kitti_dir,
sequence_length=5, transform=valid_flow_transform)
val_loader = torch.utils.data.DataLoader(val_flow_set, batch_size=1, shuffle=False,
num_workers=2, pin_memory=True, drop_last=True)
disp_net = getattr(models, args.dispnet)().cuda()
pose_net = getattr(models, args.posenet)(nb_ref_imgs=4).cuda()
mask_net = getattr(models, args.masknet)(nb_ref_imgs=4).cuda()
flow_net = getattr(models, args.flownet)(nlevels=args.nlevels).cuda()
dispnet_weights = torch.load(args.pretrained_disp)
posenet_weights = torch.load(args.pretrained_pose)
masknet_weights = torch.load(args.pretrained_mask)
flownet_weights = torch.load(args.pretrained_flow)
disp_net.load_state_dict(dispnet_weights['state_dict'])
pose_net.load_state_dict(posenet_weights['state_dict'])
flow_net.load_state_dict(flownet_weights['state_dict'])
mask_net.load_state_dict(masknet_weights['state_dict'])
disp_net.eval()
pose_net.eval()
mask_net.eval()
flow_net.eval()
error_names = ['tp_0', 'fp_0', 'fn_0', 'tp_1', 'fp_1', 'fn_1']
errors = AverageMeter(i=len(error_names))
errors_census = AverageMeter(i=len(error_names))
errors_bare = AverageMeter(i=len(error_names))
for i, (tgt_img, ref_imgs, intrinsics, intrinsics_inv, flow_gt, obj_map_gt, semantic_map_gt) in enumerate(tqdm(val_loader)):
tgt_img_var = Variable(tgt_img.cuda(), volatile=True)
ref_imgs_var = [Variable(img.cuda(), volatile=True) for img in ref_imgs]
intrinsics_var = Variable(intrinsics.cuda(), volatile=True)
intrinsics_inv_var = Variable(intrinsics_inv.cuda(), volatile=True)
flow_gt_var = Variable(flow_gt.cuda(), volatile=True)
obj_map_gt_var = Variable(obj_map_gt.cuda(), volatile=True)
disp = disp_net(tgt_img_var)
depth = 1/disp
pose = pose_net(tgt_img_var, ref_imgs_var)
explainability_mask = mask_net(tgt_img_var, ref_imgs_var)
if args.flownet in ['Back2Future']:
flow_fwd, flow_bwd, _ = flow_net(tgt_img_var, ref_imgs_var[1:3])
else:
flow_fwd = flow_net(tgt_img_var, ref_imgs_var[2])
flow_cam = pose2flow(depth.squeeze(1), pose[:,2], intrinsics_var, intrinsics_inv_var)
rigidity_mask = 1 - (1-explainability_mask[:,1])*(1-explainability_mask[:,2]).unsqueeze(1) > 0.5
rigidity_mask_census_soft = (flow_cam - flow_fwd).pow(2).sum(dim=1).unsqueeze(1).sqrt()#.normalize()
rigidity_mask_census_soft = 1 - rigidity_mask_census_soft/rigidity_mask_census_soft.max()
rigidity_mask_census = rigidity_mask_census_soft > args.THRESH
rigidity_mask_combined = 1 - (1-rigidity_mask.type_as(explainability_mask))*(1-rigidity_mask_census.type_as(explainability_mask))
flow_fwd_non_rigid = (1- rigidity_mask_combined).type_as(flow_fwd).expand_as(flow_fwd) * flow_fwd
flow_fwd_rigid = rigidity_mask_combined.type_as(flow_fwd).expand_as(flow_fwd) * flow_cam
total_flow = flow_fwd_rigid + flow_fwd_non_rigid
obj_map_gt_var_expanded = obj_map_gt_var.unsqueeze(1).type_as(flow_fwd)
tgt_img_np = tgt_img[0].numpy()
rigidity_mask_combined_np = rigidity_mask_combined.cpu().data[0].numpy()
rigidity_mask_census_np = rigidity_mask_census.cpu().data[0].numpy()
rigidity_mask_bare_np = rigidity_mask.cpu().data[0].numpy()
gt_mask_np = obj_map_gt[0].numpy()
semantic_map_np = semantic_map_gt[0].numpy()
_errors = mask_error(gt_mask_np, semantic_map_np, rigidity_mask_combined_np[0])
_errors_census = mask_error(gt_mask_np, semantic_map_np, rigidity_mask_census_np[0])
_errors_bare = mask_error(gt_mask_np, semantic_map_np, rigidity_mask_bare_np[0])
errors.update(_errors)
errors_census.update(_errors_census)
errors_bare.update(_errors_bare)
if args.output_dir is not None:
np.save(image_dir/str(i).zfill(3), tgt_img_np )
np.save(gt_dir/str(i).zfill(3), gt_mask_np)
np.save(mask_dir/str(i).zfill(3), rigidity_mask_combined_np)
if (args.output_dir is not None) and i%10==0:
ind = int(i//10)
output_writer.add_image('val Dispnet Output Normalized', tensor2array(disp.data[0].cpu(), max_value=None, colormap='bone'), ind)
output_writer.add_image('val Input', tensor2array(tgt_img[0].cpu()), i)
output_writer.add_image('val Total Flow Output', flow_to_image(tensor2array(total_flow.data[0].cpu())), ind)
output_writer.add_image('val Rigid Flow Output', flow_to_image(tensor2array(flow_fwd_rigid.data[0].cpu())), ind)
output_writer.add_image('val Non-rigid Flow Output', flow_to_image(tensor2array(flow_fwd_non_rigid.data[0].cpu())), ind)
output_writer.add_image('val Rigidity Mask', tensor2array(rigidity_mask.data[0].cpu(), max_value=1, colormap='bone'), ind)
output_writer.add_image('val Rigidity Mask Census', tensor2array(rigidity_mask_census.data[0].cpu(), max_value=1, colormap='bone'), ind)
output_writer.add_image('val Rigidity Mask Combined', tensor2array(rigidity_mask_combined.data[0].cpu(), max_value=1, colormap='bone'), ind)
if args.output_dir is not None:
tgt_img_viz = tensor2array(tgt_img[0].cpu())
depth_viz = tensor2array(disp.data[0].cpu(), max_value=None, colormap='hot')
mask_viz = tensor2array(rigidity_mask_census_soft.data[0].cpu(), max_value=1, colormap='bone')
row2_viz = flow_to_image(np.hstack((tensor2array(flow_cam.data[0].cpu()),
tensor2array(flow_fwd_non_rigid.data[0].cpu()),
tensor2array(total_flow.data[0].cpu()) )) )
row1_viz = np.hstack((tgt_img_viz, depth_viz, mask_viz))
viz3 = np.vstack((255*tgt_img_viz, 255*depth_viz, 255*mask_viz,
flow_to_image(np.vstack((tensor2array(flow_fwd_non_rigid.data[0].cpu()),
tensor2array(total_flow.data[0].cpu()))))))
row1_viz_im = Image.fromarray((255*row1_viz).astype('uint8'))
row2_viz_im = Image.fromarray((row2_viz).astype('uint8'))
viz3_im = Image.fromarray(viz3.astype('uint8'))
row1_viz_im.save(viz_dir/str(i).zfill(3)+'01.png')
row2_viz_im.save(viz_dir/str(i).zfill(3)+'02.png')
viz3_im.save(viz_dir/str(i).zfill(3)+'03.png')
bg_iou = errors.sum[0] / (errors.sum[0] + errors.sum[1] + errors.sum[2] )
fg_iou = errors.sum[3] / (errors.sum[3] + errors.sum[4] + errors.sum[5] )
avg_iou = (bg_iou + fg_iou)/2
bg_iou_census = errors_census.sum[0] / (errors_census.sum[0] + errors_census.sum[1] + errors_census.sum[2] )
fg_iou_census = errors_census.sum[3] / (errors_census.sum[3] + errors_census.sum[4] + errors_census.sum[5] )
avg_iou_census = (bg_iou_census + fg_iou_census)/2
bg_iou_bare = errors_bare.sum[0] / (errors_bare.sum[0] + errors_bare.sum[1] + errors_bare.sum[2] )
fg_iou_bare = errors_bare.sum[3] / (errors_bare.sum[3] + errors_bare.sum[4] + errors_bare.sum[5] )
avg_iou_bare = (bg_iou_bare + fg_iou_bare)/2
print("Results Full Model")
print("\t {:>10}, {:>10}, {:>10} ".format('iou', 'bg_iou', 'fg_iou'))
print("Errors \t {:10.4f}, {:10.4f} {:10.4f}".format(avg_iou, bg_iou, fg_iou))
print("Results Census only")
print("\t {:>10}, {:>10}, {:>10} ".format('iou', 'bg_iou', 'fg_iou'))
print("Errors \t {:10.4f}, {:10.4f} {:10.4f}".format(avg_iou_census, bg_iou_census, fg_iou_census))
print("Results Bare")
print("\t {:>10}, {:>10}, {:>10} ".format('iou', 'bg_iou', 'fg_iou'))
print("Errors \t {:10.4f}, {:10.4f} {:10.4f}".format(avg_iou_bare, bg_iou_bare, fg_iou_bare))
def mask_error(mot_gt, seg_gt, pred):
max_label = 2
tp = np.zeros((max_label))
fp = np.zeros((max_label))
fn = np.zeros((max_label))
mot_gt[mot_gt != 0] = 1
mov_car_gt = mot_gt
mov_car_gt[seg_gt != 26] = 255
mot_gt = mov_car_gt
r_shape = [float(i) for i in list(pred.shape)]
g_shape = [float(i) for i in list(mot_gt.shape)]
pred = zoom(pred, (g_shape[0] / r_shape[0],
g_shape[1] / r_shape[1]), order = 0)
if len(pred.shape) == 2:
mask = pred
umask = np.zeros((2, mask.shape[0], mask.shape[1]))
umask[0, :, :] = mask
umask[1, :, :] = 1. - mask
pred = umask
pred = pred.argmax(axis=0)
if (np.max(pred) > (max_label - 1) and np.max(pred)!=255):
print('Result has invalid labels: ', np.max(pred))
else:
# For each class
for class_id in range(0, max_label):
class_gt = np.equal(mot_gt, class_id)
class_result = np.equal(pred, class_id)
class_result[np.equal(mot_gt, 255)] = 0
tp[class_id] = tp[class_id] +\
np.count_nonzero(class_gt & class_result)
fp[class_id] = fp[class_id] +\
np.count_nonzero(class_result & ~class_gt)
fn[class_id] = fn[class_id] +\
np.count_nonzero(~class_result & class_gt)
return [tp[0], fp[0], fn[0], tp[1], fp[1], fn[1]]
def evalVOC(result_label_folder):
max_label = 2
class_ious = np.zeros((max_label, 1))
overall_iou = 0
overall_accuracy = 0
tp = np.zeros((max_label))
fp = np.zeros((max_label))
fn = np.zeros((max_label))
img_tp = 0
img_pixels = 0
for t in range(0, 200):
gt_file = './masks/standalone11/gt/' + str(t).zfill(3) + '.npy'
result_file = result_label_folder + '/' + str(t).zfill(3) + '.npy'
seg_gt_file = './masks/semantic_labels/training/semantic/' + str(t).zfill(6) + '_10.png'
seg_gt = np.array(Image.open(seg_gt_file))
# seg_gt = zoom(seg_gt, (256./375., 832./1242.), order = 0)
gt_labels = np.load(gt_file)
# gt_labels = zoom(gt_labels, (256./375., 832./1242.), order = 0)
gt_labels[gt_labels != 0] = 1
mov_car_gt = gt_labels
mov_car_gt[seg_gt != 26] = 255
gt_labels = mov_car_gt
result_labels = np.load(result_file)[0]
r_shape = [float(i) for i in list(result_labels.shape)]
g_shape = [float(i) for i in list(gt_labels.shape)]
result_labels = zoom(result_labels,
(g_shape[0] / r_shape[0],
g_shape[1] / r_shape[1]), order = 0)
if len(result_labels.shape) == 2:
mask = result_labels
umask = np.zeros((2, mask.shape[0], mask.shape[1]))
umask[0, :, :] = mask
umask[1, :, :] = 1. - mask
result_labels = umask
result_labels = result_labels.argmax(axis=0)
if (np.max(result_labels) > (max_label - 1) and np.max(result_labels)!=255):
print('Result has invalid labels: ', np.max(result_labels))
else:
# For each class
for class_id in range(0, max_label):
class_gt = np.equal(gt_labels, class_id)
class_result = np.equal(result_labels, class_id)
class_result[np.equal(gt_labels, 255)] = 0
tp[class_id] = tp[class_id] +\
np.count_nonzero(class_gt & class_result)
fp[class_id] = fp[class_id] +\
np.count_nonzero(class_result & ~class_gt)
fn[class_id] = fn[class_id] +\
np.count_nonzero(~class_result & class_gt)
for class_id in range(0, max_label):
class_ious[class_id] = tp[class_id] / (tp[class_id] +
fp[class_id] + fn[class_id])
overall_iou = np.mean(class_ious)
# overall_accuracy = img_tp / (img_pixels * 1.0)
print(result_label_folder)
print('Class IOUs:')
print(class_ious)
print('Overall IOU: ')
print(overall_iou)
# print('Overall Accuracy: ')
# print(overall_accuracy)
file_ = open(result_label_folder + '/scores_varun.txt','w')
file_.write(result_label_folder + '\n')
file_.write('Overall IOU: ' + str(overall_iou) + '\n' +
# 'Overall Accuracy: ' + str(overall_accuracy) + '\n' +
'Class wise iou: ' + str(class_ious.T) + '\n'
)
file_.close()
return overall_iou
if __name__ == '__main__':
main()