-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathRegression Exponential.py
58 lines (45 loc) · 1.29 KB
/
Regression Exponential.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import math
import matplotlib.pyplot as plt
import numpy as np
def showGraphScatter(x, y):
plt.scatter(x, y)
plt.show()
def expFunc(x, a_0, a_1):
return a_0 * math.e ** (a_1 * x)
def showGraph(lowerLim, upperLim, a_0, a_1, xarr, yarr):
x = np.arange(lowerLim, upperLim, .1)
y = []
for i in range(x.size):
y.append(expFunc(x[i], a_0, a_1))
plt.plot(x, y, color='blue')
plt.ylim(0, 1)
plt.xlabel('x')
plt.ylabel('y')
plt.scatter(xarr, yarr, color='red')
plt.grid(True, which='both')
plt.axhline(y=0, color='green')
plt.axvline(x=0, color='green')
plt.show()
def exponentialRegression(x, y, n):
# mapped to ln
topLeft = 0
x_sum = 0
z_sum = 0
bottomLeft = 0
for i in range(n):
topLeft += x[i] * math.log(y[i])
x_sum += x[i]
z_sum += math.log(y[i])
bottomLeft += x[i] ** 2
topLeft *= n
bottomLeft *= n
topRight = x_sum * z_sum
bottomRight = x_sum ** 2
a_1 = (topLeft - topRight) / (bottomLeft - bottomRight)
a_0 = z_sum / n - a_1 * x_sum / n
return math.e ** a_0, a_1
x = [0, 1, 3, 5, 7, 9]
y = [1, 0.891, 0.708, 0.562, 0.447, 0.355]
constants = exponentialRegression(x, y, 6)
print(constants[0], constants[1])
showGraph(0, 30, constants[0], constants[1], x, y)