-
Notifications
You must be signed in to change notification settings - Fork 101
/
Copy pathnn.h
141 lines (132 loc) · 6.35 KB
/
nn.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
/* RPROP Neural Networks implementation
* See: http://deeplearning.cs.cmu.edu/pdfs/Rprop.pdf
*
* Copyright (c) 2003-2016, Salvatore Sanfilippo <antirez at gmail dot com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Disque nor the names of its contributors may be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __NN_H
#define __NN_H
/* Data structures.
* Nets are not so 'dynamic', but enough to support
* an arbitrary number of layers, with arbitrary units for layer.
* Only fully connected feed-forward networks are supported. */
struct AnnLayer {
float *output; /* output[i], output of i-th unit */
float *error; /* error[i], output error of i-th unit*/
float *weight; /* weight[(i*units)+j] */
/* weight between unit i-th and next j-th */
float *gradient; /* gradient[(i*units)+j] gradient */
float *sgradient; /* gradient for the full training set */
/* only used for RPROP */
float *pgradient; /* pastgradient[(i*units)+j] t-1 gradient */
/* (t-1 sgradient for resilient BP) */
float *delta; /* delta[(i*units)+j] cumulative update */
/* (per-weight delta for RPROP) */
int units; /*moved to last position for alignment purposes*/
};
/* Feed forward network structure */
struct Ann {
int flags;
int layers;
float rprop_nminus;
float rprop_nplus;
float rprop_maxupdate;
float rprop_minupdate;
float learn_rate; /* Used for GD training. */
float _filler_; /*filler for alignment*/
struct AnnLayer *layer;
};
typedef float (*AnnTrainAlgoFunc)(struct Ann *net, float *input, float *desired, int setlen);
/* Raw interface to data structures */
#define OUTPUT(net,l,i) (net)->layer[l].output[i]
#define ERROR(net,l,i) (net)->layer[l].error[i]
#define WEIGHT(net,l,i,j) (net)->layer[l].weight[((j)*(net)->layer[l].units)+(i)]
#define GRADIENT(net,l,i,j) (net)->layer[l].gradient[((j)*(net)->layer[l].units)+(i)]
#define SGRADIENT(net,l,i,j) (net)->layer[l].sgradient[((j)*(net)->layer[l].units)+(i)]
#define PGRADIENT(net,l,i,j) (net)->layer[l].pgradient[((j)*(net)->layer[l].units)+(i)]
#define DELTA(net,l,i,j) (net)->layer[l].delta[((j)*(net)->layer[l].units)+(i)]
#define LAYERS(net) (net)->layers
#define UNITS(net,l) (net)->layer[l].units
#define WEIGHTS(net,l) (UNITS(net,l)*UNITS(net,l-1))
#define OUTPUT_NODE(net,i) OUTPUT(net,0,i)
#define INPUT_NODE(net,i) OUTPUT(net,((net)->layers)-1,i)
#define OUTPUT_UNITS(net) UNITS(net,0)
#define INPUT_UNITS(net) (UNITS(net,((net)->layers)-1)-1)
#define RPROP_NMINUS(net) (net)->rprop_nminus
#define RPROP_NPLUS(net) (net)->rprop_nplus
#define RPROP_MAXUPDATE(net) (net)->rprop_maxupdate
#define RPROP_MINUPDATE(net) (net)->rprop_minupdate
#define LEARN_RATE(net) (net)->learn_rate
/* Constants */
#define DEFAULT_RPROP_NMINUS 0.5
#define DEFAULT_RPROP_NPLUS 1.2
#define DEFAULT_RPROP_MAXUPDATE 50
#define DEFAULT_RPROP_MINUPDATE 0.000001
#define RPROP_INITIAL_DELTA 0.1
#define DEFAULT_LEARN_RATE 0.1
#define NN_ALGO_BPROP 0
#define NN_ALGO_GD 1
/* Misc */
#define MAX(a,b) (((a)>(b))?(a):(b))
#define MIN(a,b) (((a)<(b))?(a):(b))
/* Prototypes */
void AnnResetLayer(struct AnnLayer *layer);
struct Ann *AnnAlloc(int layers);
void AnnFreeLayer(struct AnnLayer *layer);
void AnnFree(struct Ann *net);
int AnnInitLayer(struct Ann *net, int i, int units, int bias);
struct Ann *AnnCreateNet(int layers, int *units);
struct Ann *AnnCreateNet2(int iunits, int ounits);
struct Ann *AnnCreateNet3(int iunits, int hunits, int ounits);
struct Ann *AnnCreateNet4(int iunits, int hunits, int hunits2, int ounits);
struct Ann *AnnClone(struct Ann* net);
size_t AnnCountWeights(struct Ann *net);
void AnnSimulate(struct Ann *net);
void Ann2Tcl(struct Ann *net);
void AnnPrint(struct Ann *net);
float AnnGlobalError(struct Ann *net, float *desidered);
void AnnSetInput(struct Ann *net, float *input);
float AnnSimulateError(struct Ann *net, float *input, float *desidered);
void AnnCalculateGradientsTrivial(struct Ann *net, float *desidered);
void AnnCalculateGradients(struct Ann *net, float *desidered);
void AnnSetDeltas(struct Ann *net, float val);
void AnnResetDeltas(struct Ann *net);
void AnnResetSgradient(struct Ann *net);
void AnnSetRandomWeights(struct Ann *net);
void AnnScaleWeights(struct Ann *net, float factor);
void AnnUpdateDeltasGD(struct Ann *net);
void AnnUpdateDeltasGDM(struct Ann *net);
void AnnUpdateSgradient(struct Ann *net);
void AnnAdjustWeights(struct Ann *net, int setlen);
float AnnBatchGDEpoch(struct Ann *net, float *input, float *desidered, int setlen);
float AnnBatchGDMEpoch(struct Ann *net, float *input, float *desidered, int setlen);
void AnnAdjustWeightsResilientBP(struct Ann *net);
float AnnResilientBPEpoch(struct Ann *net, float *input, float *desidered, int setlen);
float AnnTrainWithAlgoFunc(struct Ann *net, float *input, float *desidered, float maxerr, int maxepochs, int setlen, AnnTrainAlgoFunc algo_func);
float AnnTrain(struct Ann *net, float *input, float *desidered, float maxerr, int maxepochs, int setlen, int algo);
void AnnTestError(struct Ann *net, float *input, float *desired, int setlen, float *avgerr, float *classerr);
#endif /* __NN_H */