-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathapp.py
290 lines (266 loc) · 12.1 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import spaces
import mast3r.utils.path_to_dust3r # noqa
import dust3r.utils.path_to_croco # noqa: F401
import mast3r.utils.path_to_dust3r # noqa
import os
import sys
import os.path as path
import torch
import tempfile
import gradio
import shutil
import math
from mast3r.model import AsymmetricMASt3R
import matplotlib.pyplot as pl
from dust3r.utils.image import load_images
import torch.nn.functional as F
from pytorch3d.ops import knn_points
from dust3r.utils.geometry import xy_grid
import numpy as np
import cv2
from dust3r.utils.device import to_numpy
import trimesh
from dust3r.viz import add_scene_cam, CAM_COLORS, OPENGL, pts3d_to_trimesh, cat_meshes
from scipy.spatial.transform import Rotation
pl.ion()
# for gpu >= Ampere and pytorch >= 1.12
torch.backends.cuda.matmul.allow_tf32 = True
batch_size = 1
inf = float('inf')
weights_path = "checkpoints/geometry_pose.pth"
device = 'cuda' if torch.cuda.is_available() else 'cpu'
ckpt = torch.load(weights_path, map_location=device)
model = AsymmetricMASt3R(pos_embed='RoPE100', patch_embed_cls='ManyAR_PatchEmbed', img_size=(512, 512), head_type='catmlp+dpt', output_mode='pts3d+desc24', depth_mode=('exp', -inf, inf), conf_mode=('exp', 1, inf), enc_embed_dim=1024, enc_depth=24, enc_num_heads=16, dec_embed_dim=768, dec_depth=12, dec_num_heads=12, two_confs=True, desc_conf_mode=('exp', 0, inf))
model.load_state_dict(ckpt['model'], strict=False)
model = model.to(device).eval()
model = AsymmetricMASt3R.from_pretrained(weights_path).to(device)
tmpdirname = tempfile.mkdtemp(suffix='_FLARE_gradio_demo')
image_size = 512
silent = True
gradio_delete_cache = 7200
backbone = torch.hub.load(
"facebookresearch/dinov2", "dinov2_vitb14_reg"
)
backbone = backbone.eval().cuda()
class FileState:
def __init__(self, outfile_name=None):
self.outfile_name = outfile_name
def __del__(self):
if self.outfile_name is not None and os.path.isfile(self.outfile_name):
os.remove(self.outfile_name)
self.outfile_name = None
def pad_to_square(reshaped_image):
B, C, H, W = reshaped_image.shape
max_dim = max(H, W)
pad_height = max_dim - H
pad_width = max_dim - W
padding = (pad_width // 2, pad_width - pad_width // 2,
pad_height // 2, pad_height - pad_height // 2)
padded_image = F.pad(reshaped_image, padding, mode='constant', value=0)
return padded_image
def generate_rank_by_dino(
reshaped_image, backbone, query_frame_num, image_size=336
):
# Downsample image to image_size x image_size
# because we found it is unnecessary to use high resolution
rgbs = pad_to_square(reshaped_image)
rgbs = F.interpolate(
reshaped_image,
(image_size, image_size),
mode="bilinear",
align_corners=True,
)
rgbs = _resnet_normalize_image(rgbs.cuda())
# Get the image features (patch level)
frame_feat = backbone(rgbs, is_training=True)
frame_feat = frame_feat["x_norm_patchtokens"]
frame_feat_norm = F.normalize(frame_feat, p=2, dim=1)
# Compute the similiarty matrix
frame_feat_norm = frame_feat_norm.permute(1, 0, 2)
similarity_matrix = torch.bmm(
frame_feat_norm, frame_feat_norm.transpose(-1, -2)
)
similarity_matrix = similarity_matrix.mean(dim=0)
distance_matrix = 100 - similarity_matrix.clone()
# Ignore self-pairing
similarity_matrix.fill_diagonal_(-100)
similarity_sum = similarity_matrix.sum(dim=1)
# Find the most common frame
most_common_frame_index = torch.argmax(similarity_sum).item()
return most_common_frame_index
_RESNET_MEAN = [0.485, 0.456, 0.406]
_RESNET_STD = [0.229, 0.224, 0.225]
_resnet_mean = torch.tensor(_RESNET_MEAN).view(1, 3, 1, 1).cuda()
_resnet_std = torch.tensor(_RESNET_STD).view(1, 3, 1, 1).cuda()
def _resnet_normalize_image(img: torch.Tensor) -> torch.Tensor:
return (img - _resnet_mean) / _resnet_std
def calculate_index_mappings(query_index, S, device=None):
"""
Construct an order that we can switch [query_index] and [0]
so that the content of query_index would be placed at [0]
"""
new_order = torch.arange(S)
new_order[0] = query_index
new_order[query_index] = 0
if device is not None:
new_order = new_order.to(device)
return new_order
def _convert_scene_output_to_glb(outfile, imgs, pts3d, mask, focals, cams2world, cam_size=0.05,
cam_color=None, as_pointcloud=False,
transparent_cams=False, silent=False):
assert len(pts3d) == len(mask) <= len(imgs) <= len(cams2world) == len(focals)
pts3d = to_numpy(pts3d)
imgs = to_numpy(imgs)
focals = to_numpy(focals)
mask = to_numpy(mask)
cams2world = to_numpy(cams2world)
scene = trimesh.Scene()
# full pointcloud
if as_pointcloud:
pts = np.concatenate([p[m] for p, m in zip(pts3d, mask)]).reshape(-1, 3)
col = np.concatenate([p[m] for p, m in zip(imgs, mask)]).reshape(-1, 3)
valid_msk = np.isfinite(pts.sum(axis=1))
pct = trimesh.PointCloud(pts[valid_msk], colors=col[valid_msk])
scene.add_geometry(pct)
else:
meshes = []
for i in range(len(imgs)):
pts3d_i = pts3d[i].reshape(imgs[i].shape)
msk_i = mask[i] & np.isfinite(pts3d_i.sum(axis=-1))
meshes.append(pts3d_to_trimesh(imgs[i], pts3d_i, msk_i))
mesh = trimesh.Trimesh(**cat_meshes(meshes))
scene.add_geometry(mesh)
# add each camera
for i, pose_c2w in enumerate(cams2world):
if isinstance(cam_color, list):
camera_edge_color = cam_color[i]
else:
camera_edge_color = cam_color or CAM_COLORS[i % len(CAM_COLORS)]
add_scene_cam(scene, pose_c2w, camera_edge_color,
None if transparent_cams else imgs[i], focals[i],
imsize=imgs[i].shape[1::-1], screen_width=cam_size)
rot = np.eye(4)
rot[:3, :3] = Rotation.from_euler('y', np.deg2rad(180)).as_matrix()
scene.apply_transform(np.linalg.inv(cams2world[0] @ OPENGL @ rot))
if not silent:
print('(exporting 3D scene to', outfile, ')')
scene.export(file_obj=outfile)
return outfile
@spaces.GPU(duration=180)
def local_get_reconstructed_scene(inputfiles, min_conf_thr, cam_size):
batch = load_images(inputfiles, size=image_size, verbose=not silent)
images = [gt['img'] for gt in batch]
images = torch.cat(images, dim=0)
images = images / 2 + 0.5
index = generate_rank_by_dino(images, backbone, query_frame_num=1)
sorted_order = calculate_index_mappings(index, len(images), device=device)
sorted_batch = []
for i in range(len(batch)):
sorted_batch.append(batch[sorted_order[i]])
batch = sorted_batch
ignore_keys = set(['depthmap', 'dataset', 'label', 'instance', 'idx', 'rng', 'vid'])
ignore_dtype_keys = set(['true_shape', 'camera_pose', 'pts3d', 'fxfycxcy', 'img_org', 'camera_intrinsics', 'depthmap', 'depth_anything', 'fxfycxcy_unorm'])
dtype = torch.bfloat16
for view in batch:
for name in view.keys(): # pseudo_focal
if name in ignore_keys:
continue
if isinstance(view[name], torch.Tensor):
view[name] = view[name].to(device, non_blocking=True)
else:
view[name] = torch.tensor(view[name]).to(device, non_blocking=True)
if view[name].dtype == torch.float32 and name not in ignore_dtype_keys:
view[name] = view[name].to(dtype)
view1 = batch[:1]
view2 = batch[1:]
with torch.cuda.amp.autocast(enabled=True, dtype=dtype):
pred1, pred2, pred_cameras = model(view1, view2, True, dtype)
pts3d = pred2['pts3d']
conf = pred2['conf']
pts3d = pts3d.detach().cpu()
B, N, H, W, _ = pts3d.shape
thres = torch.quantile(conf.flatten(2,3), min_conf_thr, dim=-1)[0]
masks_conf = conf > thres[None, :, None, None]
masks_conf = masks_conf.cpu()
images = [view['img'] for view in view1+view2]
shape = torch.stack([view['true_shape'] for view in view1+view2], dim=1).detach().cpu().numpy()
images = torch.stack(images,1).float().permute(0,1,3,4,2).detach().cpu().numpy()
images = images / 2 + 0.5
images = images.reshape(B, N, H, W, 3)
# estimate focal length
images = images[0]
pts3d = pts3d[0]
masks_conf = masks_conf[0]
xy_over_z = (pts3d[..., :2] / pts3d[..., 2:3]).nan_to_num(posinf=0, neginf=0) # homogeneous (x,y,1)
pp = torch.tensor((W/2, H/2)).to(xy_over_z)
pixels = xy_grid(W, H, device=xy_over_z.device).view(1, -1, 2) - pp.view(-1, 1, 2) # B,HW,2
u, v = pixels[:1].unbind(dim=-1)
x, y, z = pts3d[:1].reshape(-1,3).unbind(dim=-1)
fx_votes = (u * z) / x
fy_votes = (v * z) / y
# assume square pixels, hence same focal for X and Y
f_votes = torch.cat((fx_votes.view(B, -1), fy_votes.view(B, -1)), dim=-1)
focal = torch.nanmedian(f_votes, dim=-1).values
focal = focal.item()
pts3d = pts3d.numpy()
# use PNP to estimate camera poses
pred_poses = []
for i in range(pts3d.shape[0]):
shape_input_each = shape[:, i]
mesh_grid = xy_grid(shape_input_each[0,1], shape_input_each[0,0])
cur_inlier = conf[0,i] > torch.quantile(conf[0,i], 0.6)
cur_inlier = cur_inlier.detach().cpu().numpy()
ransac_thres = 0.5
confidence = 0.9999
iterationsCount = 10_000
cur_pts3d = pts3d[i]
K = np.float32([(focal, 0, W/2), (0, focal, H/2), (0, 0, 1)])
success, r_pose, t_pose, _ = cv2.solvePnPRansac(cur_pts3d[cur_inlier].astype(np.float64), mesh_grid[cur_inlier].astype(np.float64), K, None,
flags=cv2.SOLVEPNP_SQPNP,
iterationsCount=iterationsCount,
reprojectionError=1,
confidence=confidence)
r_pose = cv2.Rodrigues(r_pose)[0]
RT = np.r_[np.c_[r_pose, t_pose], [(0,0,0,1)]]
cam2world = np.linalg.inv(RT)
pred_poses.append(cam2world)
pred_poses = np.stack(pred_poses, axis=0)
pred_poses = torch.tensor(pred_poses)
# use knn to clean the point cloud
K = 10
points = torch.tensor(pts3d.reshape(1,-1,3)).cuda()
knn = knn_points(points, points, K=K)
dists = knn.dists
mean_dists = dists.mean(dim=-1)
masks_dist = mean_dists < torch.quantile(mean_dists.reshape(-1), 0.95)
masks_dist = masks_dist.detach().cpu().numpy()
masks_conf = (masks_conf > 0) & masks_dist.reshape(-1,H,W)
masks_conf = masks_conf > 0
outdir = tempfile.mkdtemp(suffix='_FLARE_gradio_demo')
os.makedirs(outdir, exist_ok=True)
focals = [focal] * len(images)
outfile_name = tempfile.mktemp(suffix='_scene.glb', dir=outdir)
_convert_scene_output_to_glb(outfile_name, images, pts3d, masks_conf, focals, pred_poses, as_pointcloud=True,
transparent_cams=False, cam_size=cam_size, silent=silent)
return filestate, outfile_name
css = """.gradio-container {margin: 0 !important; min-width: 100%};"""
title = "FLARE Demo"
with gradio.Blocks(css=css, title=title, delete_cache=(gradio_delete_cache, gradio_delete_cache)) as demo:
filestate = gradio.State(None)
gradio.HTML('<h2 style="text-align: center;">3D Reconstruction with FLARE</h2>')
with gradio.Column():
inputfiles = gradio.File(file_count="multiple")
snapshot = gradio.Image(None, visible=False)
with gradio.Row():
# adjust the confidence threshold
min_conf_thr = gradio.Slider(label="min_conf_thr", value=0.1, minimum=0.0, maximum=1, step=0.05)
# adjust the camera size in the output pointcloud
cam_size = gradio.Slider(label="cam_size", value=0.2, minimum=0.001, maximum=1.0, step=0.001)
run_btn = gradio.Button("Run")
outmodel = gradio.Model3D()
# events
run_btn.click(fn=local_get_reconstructed_scene,
inputs=[inputfiles, min_conf_thr, cam_size],
outputs=[filestate, outmodel])
demo.launch(show_error=True, share=None, server_name=None, server_port=None)
shutil.rmtree(tmpdirname)