-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinal_sotware.py
711 lines (569 loc) · 28.4 KB
/
final_sotware.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
# D:\BTECH\SEM6\EDP\CNN\Automated-Attendance-System-using-CNN
import tensorflow as tf
from scipy import misc
import numpy as np
import argparse
import facenet
import cv2
import sys
import os
import math
import pickle
from sklearn.svm import SVC
from PIL import Image
from face_aligner import FaceAligner
import detect_face
from sheet import mark_present
from mtcnn.mtcnn import MTCNN
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
# def setup_tapo_camera():
# # Set up camera connection details
# ip_address = '192.168.x.x' # Replace with the IP address of your camera
# port = '554' # Replace with the port number for your camera
# username = 'username' # Replace with the username for your camera
# password = 'password' # Replace with the password for your camera
# # Construct the RTSP stream URLs using variables
# # url_640x480 = f"rtsp://{username}:{password}@{ip_address}:{port}/stream2"
# # url_1080p = f"rtsp://{username}:{password}@{ip_address}:{port}/stream1"
# url_2k = f"rtsp://{username}:{password}@{ip_address}:{port}/stream1_2k"
# # Set up RTSP stream URL
# return url_2k # Assuming you want to use the 640x480 stream
def dataset_creation(parameters):
path1, webcam, face_dim, gpu, username, vid_path = parameters
path = ""
res = ()
personNo = 1
folder_name = ""
path = path1
if os.path.isdir(path):
path += '/output'
if os.path.isdir(path):
print("Directory already exists. Using it \n")
else:
if not os.makedirs(path):
print("Directory successfully made in: " + path + "\n")
else:
if path == "":
print("Making an output folder in this directory only. \n")
else:
print("No such directory exists. Making an output folder in this current code directory only. \n")
path = 'output'
if os.path.isdir(path):
print("Directory already exists. Using it \n")
else:
if os.makedirs(path):
print("error in making directory. \n")
sys.exit()
else:
print("Directory successfully made: " + path + "\n")
detector = MTCNN()
res = webcam
if res == "":
res = (640, 480)
else:
res = tuple(map(int, res.split('x')))
gpu_fraction = gpu
if gpu_fraction == "":
gpu_fraction = 1.0
else:
gpu_fraction = round(float(gpu_fraction), 1)
minsize = 20
threshold = [0.6, 0.7, 0.7]
factor = 0.7
with tf.compat.v1.Graph().as_default():
gpu_options = tf.compat.v1.GPUOptions(per_process_gpu_memory_fraction=gpu_fraction)
sess = tf.compat.v1.Session(config=tf.compat.v1.ConfigProto(gpu_options=gpu_options, log_device_placement=False))
with sess.as_default():
pnet, rnet, onet = detect_face.create_mtcnn(sess, None)
face_size = face_dim
if face_size == "":
face_size = (160, 160)
# print('default face size')
else:
face_size = tuple(map(int, face_size.split('x')))
affine = FaceAligner(desiredLeftEye=(0.33, 0.33), desiredFaceWidth=face_size[0], desiredFaceHeight=face_size[1])
while True:
ask = username
ask = ask.replace(" ", "_")
if ask == "":
folder_name = 'person' + str(personNo)
else:
folder_name = ask
personNo += 1
users_folder = path + "/" + folder_name
image_no = 1
if os.path.isdir(users_folder):
print("Directory already exists. Using it \n")
else:
if os.makedirs(users_folder):
print("error in making directory. \n")
sys.exit()
else:
print("Directory successfully made: " + users_folder + "\n")
data_type = vid_path
loop_type = False
total_frames = 0
if data_type == "":
data_type = 0
loop_type = True
# Initialize webcam or video
device = cv2.VideoCapture(data_type)
# If webcam set resolution
if data_type == 0:
device.set(3, res[0])
device.set(4, res[1])
else:
# Finding total number of frames of video.
total_frames = int(device.get(cv2.CAP_PROP_FRAME_COUNT))
# Shutting down webcam variable
loop_type = False
# Start web cam or start video and start creating dataset by user.
while loop_type or (total_frames > 0):
# If video selected dec counter
if loop_type == False:
total_frames -= 1
ret, image = device.read()
# Run MTCNN and do face detection until 's' keyword is pressed
if (cv2.waitKey(1) & 0xFF) == ord("s"):
#bb, points = detect_face.detect_face(image, minsize, pnet, rnet, onet, threshold, factor)
detect = detector.detect_faces(image)
# print(detect)
# See if face is detected
if detect:
bb = detect[0]['box']
points = detect[0]['keypoints']
# print(bb)
x, y, w, h = bb
aligned_image = image[y:y+h, x:x+w]
#aligned_image = affine.align(image, points)
image_name = users_folder + "/" + folder_name + "_" + str(image_no).zfill(4) + ".png"
cv2.imwrite(image_name, aligned_image)
image_no += 1
'''
for i in range(bb.shape[0]):
cv2.rectangle(image, (int(bb[i][0]), int(bb[i][1])), (int(bb[i][2]), int(bb[i][3])), (0, 255, 0), 2)
# loop over the (x, y)-coordinates for the facial landmarks
# and draw each of them
for col in range(points.shape[1]):
for i in range(5):
cv2.circle(image, (int(points[i][col]), int(points[i + 5][col])), 1, (0, 255, 0), -1)'''
# Show the output video to user
cv2.imshow("Output", image)
# Break this loop if 'q' keyword pressed to go to next user.
if (cv2.waitKey(0) & 0xFF) == ord("q"):
device.release()
cv2.destroyAllWindows()
# break
abcd = 1
return abcd
def train(parameters):
path1, path2, batch, img_dim, gpu, svm_name, split_percent, split_data = parameters
path = path1 # input("\nEnter the path to the face images directory inside which multiple user folders are present or press ENTER if the default created output folder is present in this code directory only: ")
if path == "":
path = 'output'
gpu_fraction = gpu # input("\nEnter the gpu memory fraction u want to allocate out of 1 or press ENTER for default 0.8: ").rstrip().lstrip()
if gpu_fraction == "":
gpu_fraction = 1.0
else:
gpu_fraction = round(float(gpu_fraction), 1)
model = path2 # input("\nEnter the FOLDER PATH inside which 20180402-114759 FOLDER is present. Press ENTER stating that the FOLDER 20180402-114759 is present in this code directory itself: ").rstrip().lstrip()
if model == "":
model = "20180402-114759/20180402-114759.pb"
else:
model += "/20180402-114759/20180402-114759.pb"
batch_size = 90
ask = batch # input("\nEnter the batch size of images to process at once OR press ENTER for default 90: ").rstrip().lstrip()
if ask != "":
batch_size = int(ask)
image_size = 160
ask = img_dim # input("\nEnter the width_size of face images OR press ENTER for default 160: ").rstrip().lstrip()
if ask != "":
image_size = int(ask)
classifier_filename = svm_name # input("Enter the output SVM classifier filename OR press ENTER for default name= classifier: ")
if classifier_filename == "":
classifier_filename = 'classifier.pkl'
else:
classifier_filename += '.pkl'
classifier_filename = os.path.expanduser(classifier_filename)
split_dataset = split_data # input("\nPress Y if you want to split the dataset for Training and Testing: ").rstrip().lstrip().lower()
# If yes ask for the percentage of training and testing division.
percentage = 70
if split_dataset == 'y':
ask = split_percent # input("\nEnter the percentage of training dataset for splitting OR press ENTER for default 70: ").rstrip().lstrip()
if ask != "":
percentage = float(ask)
min_nrof_images_per_class = 0
dataset = facenet.get_dataset(path)
train_set = []
test_set = []
if split_dataset == 'y':
for cls in dataset:
paths = cls.image_paths
# Remove classes with less than min_nrof_images_per_class
if len(paths) >= min_nrof_images_per_class:
np.random.shuffle(paths)
# Find the number of images in training set and testing set images for this class
no_train_images = int(percentage * len(paths) * 0.01)
train_set.append(facenet.ImageClass(cls.name, paths[:no_train_images]))
test_set.append(facenet.ImageClass(cls.name, paths[no_train_images:]))
paths_train = []
labels_train = []
paths_test = []
labels_test = []
emb_array = []
class_names = []
if split_dataset == 'y':
paths_train, labels_train = facenet.get_image_paths_and_labels(train_set)
paths_test, labels_test = facenet.get_image_paths_and_labels(test_set)
print('\nNumber of classes: %d' % len(train_set))
print('\nNumber of images in TRAIN set: %d' % len(paths_train))
print('\nNumber of images in TEST set: %d' % len(paths_test))
else:
paths_train, labels_train = facenet.get_image_paths_and_labels(dataset)
print('\nNumber of classes: %d' % len(dataset))
print('\nNumber of images: %d' % len(paths_train))
# Find embedding
emb_array = get_embeddings(model, paths_train, batch_size, image_size, gpu_fraction)
# Train the classifier
print('\nTraining classifier')
model_svc = SVC(kernel='linear', probability=True)
model_svc.fit(emb_array, labels_train)
# Create a list of class names
if split_dataset == 'y':
class_names = [cls.name.replace('_', ' ') for cls in train_set]
else:
class_names = [cls.name.replace('_', ' ') for cls in dataset]
# Saving classifier model
with open(classifier_filename, 'wb') as outfile:
pickle.dump((model_svc, class_names), outfile)
print('\nSaved classifier model to file: "%s"' % classifier_filename)
if split_dataset == 'y':
# Find embedding for test data
emb_array = get_embeddings(model, paths_test, batch_size, image_size, gpu_fraction)
# Call test on the test set.
parameters = '', '', '', '', '', gpu_fraction
test(parameters, classifier_filename, emb_array, labels_test, model, batch_size, image_size)
c = 1
return c
def test(parameters, classifier_filename="", emb_array=[], labels_test=[], model="", batch_size=0, image_size=0):
path1, path2, path3, batch_size, img_dim, gpu = parameters
if classifier_filename == "":
classifier_filename = path1 # input("\nEnter the path of the classifier .pkl file or press ENTER if a filename classifier.pkl is present in this code directory itself: ")
if classifier_filename == "":
classifier_filename = 'classifier.pkl'
classifier_filename = os.path.expanduser(classifier_filename)
gpu_fraction = gpu # input("\nEnter the gpu memory fraction u want to allocate out of 1 or press ENTER for default 0.8: ").rstrip().lstrip()
if gpu_fraction == "":
gpu_fraction = 1.0
else:
gpu_fraction = round(float(gpu_fraction), 1)
if model == "":
model = path2 # input("\nEnter the FOLDER PATH inside which 20180402-114759 FOLDER is present. Press ENTER stating that the FOLDER 20180402-114759 is present in this code directory itself: ").rstrip()
if model == "":
model = "20180402-114759/20180402-114759.pb"
if batch_size == 0 or batch_size == '':
ask = batch_size # input("\nEnter the batch size of images to process at once OR press ENTER for default 90: ").rstrip().lstrip()
if ask == "":
batch_size = 90
else:
batch_size = int(ask)
if image_size == 0:
ask = img_dim # input("\nEnter the width_size of face images OR press ENTER for default 160: ").rstrip().lstrip()
if ask == "":
image_size = 160
else:
image_size = int(ask)
if labels_test == []:
path = path3 # input("\nEnter the path to the face images directory inside which multiple user folders are present or press ENTER if the default created output folder is present in this code directory only: ")
if path == "":
path = 'output'
dataset = facenet.get_dataset(path)
paths, labels_test = facenet.get_image_paths_and_labels(dataset)
print('\nNumber of classes to test: %d' % len(dataset))
print('\nNumber of images to test: %d' % len(paths))
# Generate embeddings of these paths
emb_array = get_embeddings(model, paths, batch_size, image_size, gpu_fraction)
# Classify images
print('\nTesting classifier')
with open(classifier_filename, 'rb') as infile:
(modelSVM, class_names) = pickle.load(infile)
print('\nLoaded classifier model from file "%s"' % classifier_filename)
predictions = modelSVM.predict_proba(emb_array)
best_class_indices = np.argmax(predictions, axis=1)
best_class_probabilities = predictions[np.arange(len(best_class_indices)), best_class_indices]
for i in range(len(best_class_indices)):
print('%4d %s: %.3f' % (i, class_names[best_class_indices[i]], best_class_probabilities[i]))
accuracy = np.mean(np.equal(best_class_indices, labels_test))
print('\nAccuracy: %.3f' % accuracy)
def get_embeddings(model, paths, batch_size, image_size, gpu_fraction):
# initializing the facenet tensorflow model
gpu_options = tf.compat.v1.GPUOptions(per_process_gpu_memory_fraction=gpu_fraction)
with tf.compat.v1.Graph().as_default():
with tf.compat.v1.Session(config=tf.compat.v1.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) as sess:
# Load the model
print('\nLoading feature extraction model')
facenet.load_model(model)
# Get input and output tensors
images_placeholder = tf.compat.v1.get_default_graph().get_tensor_by_name("input:0")
embeddings = tf.compat.v1.get_default_graph().get_tensor_by_name("embeddings:0")
phase_train_placeholder =tf.compat.v1.get_default_graph().get_tensor_by_name("phase_train:0")
embedding_size = embeddings.get_shape()[1]
# Run forward pass to calculate embeddings
print('Calculating features for images')
nrof_images = len(paths)
nrof_batches_per_epoch = int(math.ceil(1.0 * nrof_images / batch_size))
emb_array = np.zeros((nrof_images, embedding_size))
for i in range(nrof_batches_per_epoch):
start_index = i * batch_size
end_index = min((i + 1) * batch_size, nrof_images)
paths_batch = paths[start_index:end_index]
# print(paths_batch)
# Does random crop, prewhitening and flipping.
images = facenet.load_data(paths_batch, False, False, image_size)
# Get the embeddings
feed_dict = {images_placeholder: images, phase_train_placeholder: False}
emb_array[start_index:end_index, :] = sess.run(embeddings, feed_dict=feed_dict)
return emb_array
def recognize(mode, parameters):
print(parameters)
path1, path2, face_dim, gpu, thresh1, thresh2, resolution, img_path, out_img_path, vid_path, vid_save, vid_see = parameters
st_name = ''
# Taking the parameters for recogniton by the user
if path1:
classifier_filename = path1 # input("\nEnter the path of the classifier .pkl file or press ENTER if a filename 'classifier.pkl' is present in this code directory itself: ")
else:
classifier_filename = 'classifier.pkl'
classifier_filename = os.path.expanduser(classifier_filename)
if path2:
model = path2 # input("\nEnter the FOLDER PATH inside which 20180402-114759 FOLDER is present. Press ENTER stating that the FOLDER 20180402-114759 is present in this code directory itself: ").rstrip()
else:
model = "20180402-114759/20180402-114759.pb"
# Create an object of face aligner module
image_size = (160, 160)
if face_dim:
ask = face_dim # input("\nEnter desired face width and height in WidthxHeight format for face aligner to take OR press ENTER for default 160x160 pixel: ").rstrip().lower()
image_size = tuple(map(int, ask.split('x')))
# Take gpu fraction values
if gpu:
gpu_fraction = gpu # input("\nEnter the gpu memory fraction u want to allocate out of 1 or press ENTER for default 0.8: ").rstrip()
gpu_fraction = round(float(gpu_fraction), 1)
else:
gpu_fraction = 1.0
# input_type = input("\nPress I for image input OR\nPress V for video input OR\nPress W for webcam input OR\nPress ENTER for default webcam: ").lstrip().rstrip().lower()
# if input_type == "":
# input_type = 'w'
input_type = mode
# Load the face aligner model
affine = FaceAligner(desiredLeftEye=(0.33, 0.33), desiredFaceWidth=image_size[0], desiredFaceHeight=image_size[1])
# Building seperate graphs for both the tf architectures
g1 = tf.compat.v1.Graph()
g2 = tf.compat.v1.Graph()
# Load the model for FaceNet image recognition
with g1.as_default():
gpu_options = tf.compat.v1.GPUOptions(per_process_gpu_memory_fraction=gpu_fraction)
sess = tf.compat.v1.Session(config=tf.compat.v1.ConfigProto(gpu_options=gpu_options, log_device_placement=False))
with tf.compat.v1.Session() as sess:
facenet.load_model(model)
# Load the model of MTCNN face detection.
with g2.as_default():
gpu_options = tf.compat.v1.GPUOptions(per_process_gpu_memory_fraction=gpu_fraction)
sess = tf.compat.v1.Session(config=tf.compat.v1.ConfigProto(gpu_options=gpu_options, log_device_placement=False))
with sess.as_default():
pnet, rnet, onet = detect_face.create_mtcnn(sess, None)
# Some MTCNN network parameters
minsize = 20 # minimum size of face
threshold = [0.6, 0.7, 0.8] # Three steps's threshold
factor = 0.709 # scale factor
if thresh1:
ask = thresh1 # input("\nEnter the threshold FACE DETECTION CONFIDENCE SCORE to consider detection by MTCNN OR press ENTER for default 0.80: ")
if ask != "" and float(ask) < 1:
threshold[2] = round(float(ask), 2)
classifier_threshold = 0.50
if thresh2:
ask = thresh2 # input("\nEnter the threshold FACE RECOGNITION CONFIDENCE SCORE to consider face is recognised OR press ENTER for default 0.50: ")
if ask != "":
classifier_threshold = float(ask)
# Loading the classifier model
with open(classifier_filename, 'rb') as infile:
(modelSVM, class_names) = pickle.load(infile)
# helper variables
image = []
device = []
display_output = True
# Webcam variables
loop_type = False
res = (640, 480)
# Video input variables
total_frames = 0
save_video = False
frame_no = 1
output_video = []
# image input type variables
save_images = False
image_folder = ""
out_img_folder = ""
imageNo = 1
image_list = []
image_name = ""
# If web cam is selected
if input_type == "w":
data_type = 0
loop_type = True
# Ask for webcam resolution
if resolution:
ask = resolution # input("\nEnter your webcam SUPPORTED resolution for face detection. For eg. 640x480 OR press ENTER for default 640x480: ").rstrip().lower()
if ask != "":
res = tuple(map(int, ask.split('x')))
# If image selected, go to image function.
elif input_type == "i":
# Create a list of images inside the given folder
if img_path:
image_folder = img_path # input("\nWrite the folder path inside which images are kept: ").rstrip().lstrip()
for img in os.listdir(image_folder):
image_list.append(img)
total_frames = len(image_list)
path = 'y' # vid_save #input("\nIf you want to save the output images to a folder press Y OR press ENTER to ignore it: ").lstrip().rstrip().lower()
if path == "y":
save_images = True
path = out_img_path # input("\nEnter the location of output folder OR press ENTER to default create an output_images directory here only: ").lstrip().rstrip()
if os.path.isdir(path) or path == "":
# User given path is present.
if path == "":
path = "output_images"
else:
path += '/output_images'
if os.path.isdir(path):
print("Directory already exists. Using it \n")
else:
if not os.makedirs(path):
print("Directory successfully made in: " + path + "\n")
else:
print("Error image folder path. Exiting")
sys.exit()
out_img_folder = path + "/"
# Video is selected
else:
data_type = vid_path # input("\nWrite the video path file to open: ").rstrip().lstrip()
ask = vid_save # input("\nPress y to save the output video OR simply press ENTER to ignore it: ").lstrip().rstrip().lower()
if ask == "y":
save_video = True
if input_type != "w":
ask = vid_see # input("\nSimply press ENTER to see the output video OR press N to switch off the display: ").lstrip().rstrip().lower()
if ask != "y":
display_output = False
# Initialize webcam or video if no image format
if input_type != "i":
device = cv2.VideoCapture(data_type)
# If webcam set resolution
if input_type == "w":
device.set(3, res[0])
device.set(4, res[1])
elif input_type == "v":
# Finding total number of frames of video.
total_frames = int(device.get(cv2.CAP_PROP_FRAME_COUNT))
# save video feature.
if save_video:
# Finding the file format, size and the fps rate
fps = device.get(cv2.CAP_PROP_FPS)
video_format = int(device.get(cv2.CAP_PROP_FOURCC))
frame_size = (int(device.get(cv2.CAP_PROP_FRAME_WIDTH)), int(device.get(cv2.CAP_PROP_FRAME_HEIGHT)))
# Creating video writer to save the video after process if needed
output_video = cv2.VideoWriter("/home/ml/Documents/attendance_dl/videos/dslr/Output_" + data_type, video_format, fps, frame_size)
# Start web cam or start video and start creating dataset by user.
while loop_type or (frame_no <= total_frames):
if input_type == "i":
image = cv2.imread(image_folder + "/" + image_list[frame_no - 1])
else:
ret, image = device.read()
# Run MTCNN model to detect faces
g2.as_default()
with tf.compat.v1.Session(graph=g2) as sess:
# we get the bounding boxes as well as the points for the face
frame = image
#/home/ml/Documents/attendance_dl/dataset/test.mp4
image = cv2.resize(image, (800, 600))
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
value = 0
h, s, v = cv2.split(hsv)
v -= value
#h -= value
image = cv2.merge((h, s, v))
image = cv2.cvtColor(image, cv2.COLOR_HSV2BGR) ################################################################
#image = noisy('speckle', image)
image = np.asarray(image, dtype = 'uint8')
bb, points = detect_face.detect_face(image, minsize, pnet, rnet, onet, threshold, factor)
# See if face is detected
if bb.shape[0] > 0:
# ALIGNMENT - use the bounding boxes and facial landmarks points to align images
# create a numpy array to feed the network
img_list = []
images = np.empty([bb.shape[0], image.shape[0], image.shape[1]])
for col in range(points.shape[1]):
aligned_image = affine.align(image, points[:, col])
# print(aligned_image)
# print("\n" + str(len(aligned_image)))
# Prewhiten the image for facenet architecture to give better results
mean = np.mean(aligned_image)
std = np.std(aligned_image)
std_adj = np.maximum(std, 1.0 / np.sqrt(aligned_image.size))
ready_image = np.multiply(np.subtract(aligned_image, mean), 1 / std_adj)
img_list.append(ready_image)
images = np.stack(img_list)
# EMBEDDINGS: Use the processed aligned images for Facenet embeddings
g1.as_default()
with tf.compat.v1.Session(graph=g1) as sess:
# Run forward pass on FaceNet to get the embeddings
images_placeholder = tf.compat.v1.get_default_graph().get_tensor_by_name("input:0")
embeddings = tf.compat.v1.get_default_graph().get_tensor_by_name("embeddings:0")
phase_train_placeholder = tf.compat.v1.get_default_graph().get_tensor_by_name("phase_train:0")
feed_dict = {images_placeholder: images, phase_train_placeholder: False}
embedding = sess.run(embeddings, feed_dict=feed_dict)
# PREDICTION: use the classifier to predict the most likely class (person).
predictions = modelSVM.predict_proba(embedding)
best_class_indices = np.argmax(predictions, axis=1)
best_class_probabilities = predictions[np.arange(len(best_class_indices)), best_class_indices]
# DRAW: draw bounding boxes, landmarks and predicted names
if save_video or display_output or save_images:
for i in range(bb.shape[0]):
cv2.rectangle(image, (int(bb[i][0]), int(bb[i][1])), (int(bb[i][2]), int(bb[i][3])), (0, 255, 0), 1)
# Put name and probability of detection only if given threshold is crossed
if best_class_probabilities[i] > classifier_threshold:
cv2.putText(image, class_names[best_class_indices[i]], (int(bb[i][0] + 1), int(bb[i][1]) + 10), cv2.FONT_HERSHEY_COMPLEX_SMALL, 0.6, (255, 255, 0), 1, cv2.LINE_AA)
print(class_names[best_class_indices[i]])
st_name += ','
st_name += class_names[best_class_indices[i]]
mark_present(st_name)
#cv2.waitKey(0)
#cv2.putText(image, str(round(best_class_probabilities[i] * 100, 2)) + "%", (int(bb[i][0]), int(bb[i][3]) + 7), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 255, 255), 1, cv2.LINE_AA)
# loop over the (x, y)-coordinates for the facial landmarks
for col in range(points.shape[1]):
for i in range(5):
cv2.circle(image, (int(points[i][col]), int(points[i + 5][col])), 1, (0, 255, 0), 1)
if display_output:
cv2.imshow("Output", image)
if save_video:
output_video.write(image)
if save_images:
output_name = out_img_folder + image_list[frame_no - 1]
# Just taking the initial name of the input image and save in jpg which opencv supports for sure
# output_name = out_img_folder + image_list[frame_no-1].split(".")[0] + ".jpg"
cv2.imwrite(output_name, image)
# If video or images selected dec counter
if loop_type == False:
# Display the progress
print("\nProgress: %.2f" % (100 * frame_no / total_frames) + "%")
frame_no += 1
# if the `q` key was pressed, break from the loop
if cv2.waitKey(1) & 0xFF == ord('q'):
# do a bit of cleanup
if save_video:
output_video.release()
device.release()
cv2.destroyAllWindows()
break
if cv2.waitKey(1) & 0xFF == ord('q'):
device.release()
cv2.destroyAllWindows()
return st_name
if __name__ == '__main__':
main()