Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Enhance API Design #4

Open
DapengFeng opened this issue Nov 17, 2024 · 0 comments
Open

Enhance API Design #4

DapengFeng opened this issue Nov 17, 2024 · 0 comments

Comments

@DapengFeng
Copy link

Hi @andrewssobral , inspired by your excellent repo:), I have implemented a similar Adapter Class. Do you have any suggestions for API design enhancement?

template <typename T,
          uint32_t channels_ = 1,
          typename = std::enable_if_t<std::is_arithmetic_v<T>>>
class Adapter {
 public:
  using Tensor = torch::Tensor;
  using Mat = cv::Mat;
  using MatrixColMajor = Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>;
  using MatrixRowMajor =
      Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>;
  explicit Adapter(const Tensor& tensor) {
    Tensor cpu_tensor;
    if constexpr (channels_ == 1) {
      cpu_tensor = tensor.detach().to(torch::kCPU, true).contiguous();
    } else {
      cpu_tensor = tensor.detach().to(torch::kCPU, true).permute({1, 2, 0}).contiguous();
    }
    data_ptr_ = cpu_tensor.data_ptr();
    rows_ = cpu_tensor.size(0);
    cols_ = cpu_tensor.size(1);
  }

  explicit Adapter(const Mat& mat) {
    data_ptr_ = mat.data;
    rows_ = mat.rows;
    cols_ = mat.cols;
  }

  explicit Adapter(const MatrixColMajor& mat) {
    data_ptr_ = const_cast<T*>(mat.data());
    rows_ = mat.cols();
    cols_ = mat.rows();
    is_raw_ = false;
  }

  inline Tensor toTensor(const bool copy = true) {
    Tensor tensor;
    if constexpr (channels_ == 1) {
      tensor = torch::from_blob(data_ptr_, {rows_, cols_}, torch::TensorOptions(torch::CppTypeToScalarType<T>()));
    } else {
      tensor = torch::from_blob(data_ptr_, {rows_, cols_, channels_},
                                torch::TensorOptions(torch::CppTypeToScalarType<T>()))
                   .permute({2, 0, 1})
                   .contiguous();
    }
    if (!is_raw_) {
      tensor = tensor.mT();
    }
    if (copy) {
      return tensor.clone();
    } else {
      return tensor;
    }
  }

  template <typename = std::enable_if_t<std::is_floating_point_v<T> && sizeof(T) == sizeof(float)>>
  inline Mat toCvMat(const bool copy = true) {
    Mat mat(rows_, cols_, CV_32FC(channels_), data_ptr_);
    if (!is_raw_) {
      mat = mat.t();
    }
    if (copy) {
      return mat.clone();
    } else {
      return mat;
    }
  }

  template <typename = std::enable_if_t<channels_ == 1>>
  inline MatrixColMajor toEigenMatrix() {
    if (!is_raw_) {
      return Eigen::Map<MatrixColMajor>(reinterpret_cast<T*>(data_ptr_), cols_, rows_);
    }
    return Eigen::Map<MatrixRowMajor>(reinterpret_cast<T*>(data_ptr_), rows_, cols_);
  }

 private:
  void* data_ptr_;
  uint32_t rows_;
  uint32_t cols_;
  bool is_raw_ = true;
};

Note

  • Shadow copy of Eigen Matrix.
  • High dimensional tensor.
  • Host (cpu) and Device (gpu, npu, and others).
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant