Note: for matplotlib to work, use python standardlib venv instead of "virtualenv".
python3 -m venv ./venv3
source ./venv3/bin/activate
pip install -r requirements.txt
pip install -r requirements-dev.txt
tensorboard_in_notebooks.ipynb - Colaboratory
# Load the TensorBoard notebook extension
%load_ext tensorboard
# start t-board:
%tensorboard --logdir logs
from google.colab import drive
drive.mount('/content/drive')
reload imports:
%load_ext autoreload
%autoreload 2
Errors-and-Debugging.ipynb - Colaboratory
%debug
# or
%pdb on
tf.compat.v1.train.Saver | TensorFlow Core v2.4.1
zalandoresearch/fashion-mnist: A MNIST-like fashion product database. Benchmark
Train Compositional Pattern Producing Network as a Generative Model, using Generative Adversarial Networks and Variational Autoencoder techniques to produce high resolution images.
Run python train.py
from the command line to train from scratch and experiment with different settings.
sampler.py
can be used inside IPython to interactively see results from the models being trained.
See my blog post at blog.otoro.net for more details.
I tested the implementation on TensorFlow 0.60.
Used images2gif.py written by Almar Klein, Ant1, Marius van Voorden.
BSD - images2gif.py
MIT - everything else