-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathdata_load.py
56 lines (47 loc) · 2.21 KB
/
data_load.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# -*- coding: utf-8 -*-
# !/usr/bin/env python
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import glob
import numpy as np
import tensorflow as tf
from audio import read_wav, wav2melspec_db, trim_wav, fix_length
from hparam import hparam as hp
import math
import random
class Dataset():
def __init__(self, data_path, batch_size, length, is_training=True):
self.batch_size = batch_size
wav_files = glob.glob(data_path)
dataset_cut_idx = int(len(wav_files) * hp.train.dataset_ratio)
self.wav_files = wav_files[:dataset_cut_idx] if is_training else wav_files[dataset_cut_idx:]
self.length = length
self.is_training = is_training
def __call__(self, n_prefetch=1000, n_thread=32):
dataset = tf.data.Dataset.from_tensor_slices(self.wav_files)
dataset = dataset.shuffle(len(self.wav_files))
dataset = dataset.map(
lambda file: tf.py_func(self._get_wav_and_melspec, [file, self.length, self.is_training], [tf.float32, tf.float32]),
num_parallel_calls=n_thread)
dataset = dataset.repeat().batch(self.batch_size).prefetch(n_prefetch)
return dataset
@staticmethod
def _get_wav_and_melspec(wav_file, length, is_training=True):
'''
the range of values of wav is [-1, 1].
'''
wav = read_wav(wav_file, sr=hp.signal.sr)
wav = trim_wav(wav)
# divide wav into chunks that have the given length and one is randomly selected in training, but first chunk in generation.
n_clips = math.ceil(len(wav) / length) if is_training else 1
idx = random.randrange(n_clips)
start, end = length * idx, length * (idx + 1)
wav = wav[start:end]
assert(len(wav) <= length)
wav = fix_length(wav, length) # padding in case of last chunk.
melspec = wav2melspec_db(wav, sr=hp.signal.sr, n_fft=hp.signal.n_fft, win_length=hp.signal.win_length,
hop_length=hp.signal.hop_length, n_mels=hp.signal.n_mels,
min_db=hp.signal.min_db, max_db=hp.signal.max_db)
wav = np.expand_dims(wav, -1)
return wav, melspec.astype(np.float32)