-
Notifications
You must be signed in to change notification settings - Fork 150
/
Copy pathutils.py
68 lines (54 loc) · 1.85 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# -*- coding: utf-8 -*-
#!/usr/bin/env python
'''
By Dabi Ahn. [email protected].
https://www.github.com/andabi
'''
from __future__ import division
import numpy as np
class Diff(object):
def __init__(self, v=0.):
self.value = v
self.diff = 0.
def update(self, v):
if self.value:
diff = (v / self.value - 1)
self.diff = diff
self.value = v
def shape(tensor):
s = tensor.get_shape()
return tuple([s[i].value for i in range(0, len(s))])
# TODO general pretty print
def pretty_list(list):
return ', '.join(list)
def pretty_dict(dict):
return '\n'.join('{} : {}'.format(k, v) for k, v in dict.items())
def closest_power_of_two(target):
if target > 1:
for i in range(1, int(target)):
if (2 ** i >= target):
pwr = 2 ** i
break
if abs(pwr - target) < abs(pwr/2 - target):
return pwr
else:
return int(pwr / 2)
else:
return 1
# Write the nd array to txtfile
def nd_array_to_txt(filename, data):
path = filename + '.txt'
file = open(path, 'w')
with file as outfile:
# I'm writing a header here just for the sake of readability
# Any line starting with "#" will be ignored by numpy.loadtxt
outfile.write('# Array shape: {0}\n'.format(data.shape))
# Iterating through a ndimensional array produces slices along
# the last axis. This is equivalent to data[i,:,:] in this case
for data_slice in data:
# The formatting string indicates that I'm writing out
# the values in left-justified columns 7 characters in width
# with 2 decimal places.
np.savetxt(outfile, data_slice, fmt='%-7.2f')
# Writing out a break to indicate different slices...
outfile.write('# New slice\n')