Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Help on train2.py #89

Closed
YashBangera7 opened this issue Jan 30, 2019 · 4 comments
Closed

Help on train2.py #89

YashBangera7 opened this issue Jan 30, 2019 · 4 comments

Comments

@YashBangera7
Copy link

Can someone please tell me how to run train2.py ?
I have already trained train1.py and tested it using eval1.py have a case generated as TIMIT_ACTUAL1 .
I do not understand what to use as the arguments for train2

@Huishou
Copy link

Huishou commented Jan 30, 2019

Hi,If you work in Pycharm, just check the train2.py. Do you have any problem with running it?

@YashBangera7
Copy link
Author

Hi,If you work in Pycharm, just check the train2.py. Do you have any problem with running it?

Yeah . Actually I was running it on windows 10 . Succesfully got off running train1.py on NVIDIA GTX 1050 Ti and unable to run the train2.py . No idea about the -case arguments and how to run it . It would be really helpful if you could suggest me the procedure. Running it through anaconda prompt on the gpu

@YashBangera7
Copy link
Author

The entire command is as follows :
(dlwin36) C:\Users\Yash\Downloads\Deep Voice\deep-voice-conversion-master>python train2.py -case TIMIT_ACTUAL1 -gpu 0
case: TIMIT_ACTUAL1, logdir1: cases/TIMIT_ACTUAL1/train1, logdir2: cases/TIMIT_ACTUAL1/train2
�[32m[0130 22:20:11 @logger.py:108]�[0m �[5m�[31mWRN�[0m Log directory cases/TIMIT_ACTUAL1/train2 exists! Use 'd' to delete it.
�[32m[0130 22:20:11 @logger.py:111]�[0m �[5m�[31mWRN�[0m If you're resuming from a previous run, you can choose to keep it.
Press any other key to exit.
Select Action: k (keep) / d (delete) / q (quit):d
�[32m[0130 22:20:13 @logger.py:73]�[0m Argv: train2.py -case TIMIT_ACTUAL1 -gpu 0
�[32m[0130 22:20:13 @parallel.py:176]�[0m �[5m�[31mWRN�[0m MultiProcessPrefetchData does support windows. However, windows requires more strict picklability on processes, which may lead of failure on some of the code.
�[32m[0130 22:20:13 @parallel.py:186]�[0m [MultiProcessPrefetchData] Will fork a dataflow more than one times. This assumes the datapoints are i.i.d.
C:\Users\Yash\anaconda\envs\dlwin36\lib\site-packages\librosa\effects.py:486: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use arr[tuple(seq)] instead of arr[seq]. In the future this will be interpreted as an array index, arr[np.array(seq)], which will result either in an error or a different result.
return y[full_index], np.asarray([start, end])
C:\Users\Yash\anaconda\envs\dlwin36\lib\site-packages\librosa\util\utils.py:343: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use arr[tuple(seq)] instead of arr[seq]. In the future this will be interpreted as an array index, arr[np.array(seq)], which will result either in an error or a different result.
return data[slices]
C:\Users\Yash\anaconda\envs\dlwin36\lib\site-packages\librosa\effects.py:486: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use arr[tuple(seq)] instead of arr[seq]. In the future this will be interpreted as an array index, arr[np.array(seq)], which will result either in an error or a different result.
return y[full_index], np.asarray([start, end])
C:\Users\Yash\anaconda\envs\dlwin36\lib\site-packages\librosa\util\utils.py:343: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use arr[tuple(seq)] instead of arr[seq]. In the future this will be interpreted as an array index, arr[np.array(seq)], which will result either in an error or a different result.
return data[slices]
C:\Users\Yash\anaconda\envs\dlwin36\lib\site-packages\librosa\effects.py:486: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use arr[tuple(seq)] instead of arr[seq]. In the future this will be interpreted as an array index, arr[np.array(seq)], which will result either in an error or a different result.
return y[full_index], np.asarray([start, end])
C:\Users\Yash\anaconda\envs\dlwin36\lib\site-packages\librosa\util\utils.py:343: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use arr[tuple(seq)] instead of arr[seq]. In the future this will be interpreted as an array index, arr[np.array(seq)], which will result either in an error or a different result.
return data[slices]
C:\Users\Yash\anaconda\envs\dlwin36\lib\site-packages\librosa\effects.py:486: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use arr[tuple(seq)] instead of arr[seq]. In the future this will be interpreted as an array index, arr[np.array(seq)], which will result either in an error or a different result.
return y[full_index], np.asarray([start, end])
C:\Users\Yash\anaconda\envs\dlwin36\lib\site-packages\librosa\util\utils.py:343: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use arr[tuple(seq)] instead of arr[seq]. In the future this will be interpreted as an array index, arr[np.array(seq)], which will result either in an error or a different result.
return data[slices]
�[32m[0130 22:22:35 @sesscreate.py:38]�[0m �[5m�[31mWRN�[0m User-provided custom session config may not work due to TF bugs. See https://github.com/tensorpack/tensorpack/issues/497 for workarounds.
�[32m[0130 22:22:35 @config.py:165]�[0m �[5m�[31mWRN�[0m TrainConfig.nr_tower was deprecated! Set the number of GPUs on the trainer instead!
�[32m[0130 22:22:35 @config.py:166]�[0m �[5m�[31mWRN�[0m See https://github.com/tensorpack/tensorpack/issues/458 for more information.
�[32m[0130 22:22:35 @develop.py:96]�[0m �[5m�[31mWRN�[0m [Deprecated] ModelDescBase._get_inputs() interface will be deprecated after 30 Mar. Use inputs() instead!
�[32m[0130 22:22:35 @input_source.py:220]�[0m Setting up the queue 'QueueInput/input_queue' for CPU prefetching ...
�[32m[0130 22:22:35 @trainers.py:52]�[0m Building graph for a single training tower ...
�[32m[0130 22:22:35 @develop.py:96]�[0m �[5m�[31mWRN�[0m [Deprecated] ModelDescBase._build_graph() interface will be deprecated after 30 Mar. Use build_graph() instead!
C:\Users\Yash\anaconda\envs\dlwin36\lib\site-packages\librosa\effects.py:486: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use arr[tuple(seq)] instead of arr[seq]. In the future this will be interpreted as an array index, arr[np.array(seq)], which will result either in an error or a different result.
return y[full_index], np.asarray([start, end])
C:\Users\Yash\anaconda\envs\dlwin36\lib\site-packages\librosa\util\utils.py:343: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use arr[tuple(seq)] instead of arr[seq]. In the future this will be interpreted as an array index, arr[np.array(seq)], which will result either in an error or a different result.
return data[slices]
�[32m[0130 22:22:46 @develop.py:96]�[0m �[5m�[31mWRN�[0m [Deprecated] get_cost() and self.cost will be deprecated after 30 Mar. Return the cost tensor directly in build_graph() instead!
�[32m[0130 22:22:46 @develop.py:96]�[0m �[5m�[31mWRN�[0m [Deprecated] ModelDescBase._get_optimizer() interface will be deprecated after 30 Mar. Use optimizer() instead!
�[32m[0130 22:23:11 @model_utils.py:64]�[0m �[36mTrainable Variables:
�[0mname shape dim


net1/prenet/dense1/kernel:0 [60, 128] 7680
net1/prenet/dense1/bias:0 [128] 128
net1/prenet/dense2/kernel:0 [128, 64] 8192
net1/prenet/dense2/bias:0 [64] 64
net1/cbhg/conv1d_banks/num_1/conv1d/conv1d/kernel:0 [1, 64, 64] 4096
net1/cbhg/conv1d_banks/num_1/normalize/beta:0 [64] 64
net1/cbhg/conv1d_banks/num_1/normalize/gamma:0 [64] 64
net1/cbhg/conv1d_banks/num_2/conv1d/conv1d/kernel:0 [2, 64, 64] 8192
net1/cbhg/conv1d_banks/num_2/normalize/beta:0 [64] 64
net1/cbhg/conv1d_banks/num_2/normalize/gamma:0 [64] 64
net1/cbhg/conv1d_banks/num_3/conv1d/conv1d/kernel:0 [3, 64, 64] 12288
net1/cbhg/conv1d_banks/num_3/normalize/beta:0 [64] 64
net1/cbhg/conv1d_banks/num_3/normalize/gamma:0 [64] 64
net1/cbhg/conv1d_banks/num_4/conv1d/conv1d/kernel:0 [4, 64, 64] 16384
net1/cbhg/conv1d_banks/num_4/normalize/beta:0 [64] 64
net1/cbhg/conv1d_banks/num_4/normalize/gamma:0 [64] 64
net1/cbhg/conv1d_banks/num_5/conv1d/conv1d/kernel:0 [5, 64, 64] 20480
net1/cbhg/conv1d_banks/num_5/normalize/beta:0 [64] 64
net1/cbhg/conv1d_banks/num_5/normalize/gamma:0 [64] 64
net1/cbhg/conv1d_banks/num_6/conv1d/conv1d/kernel:0 [6, 64, 64] 24576
net1/cbhg/conv1d_banks/num_6/normalize/beta:0 [64] 64
net1/cbhg/conv1d_banks/num_6/normalize/gamma:0 [64] 64
net1/cbhg/conv1d_banks/num_7/conv1d/conv1d/kernel:0 [7, 64, 64] 28672
net1/cbhg/conv1d_banks/num_7/normalize/beta:0 [64] 64
net1/cbhg/conv1d_banks/num_7/normalize/gamma:0 [64] 64
net1/cbhg/conv1d_banks/num_8/conv1d/conv1d/kernel:0 [8, 64, 64] 32768
net1/cbhg/conv1d_banks/num_8/normalize/beta:0 [64] 64
net1/cbhg/conv1d_banks/num_8/normalize/gamma:0 [64] 64
net1/cbhg/conv1d_1/conv1d/kernel:0 [3, 512, 64] 98304
net1/cbhg/normalize/beta:0 [64] 64
net1/cbhg/normalize/gamma:0 [64] 64
net1/cbhg/conv1d_2/conv1d/kernel:0 [3, 64, 64] 12288
net1/cbhg/highwaynet_0/dense1/kernel:0 [64, 64] 4096
net1/cbhg/highwaynet_0/dense1/bias:0 [64] 64
net1/cbhg/highwaynet_0/dense2/kernel:0 [64, 64] 4096
net1/cbhg/highwaynet_0/dense2/bias:0 [64] 64
net1/cbhg/highwaynet_1/dense1/kernel:0 [64, 64] 4096
net1/cbhg/highwaynet_1/dense1/bias:0 [64] 64
net1/cbhg/highwaynet_1/dense2/kernel:0 [64, 64] 4096
net1/cbhg/highwaynet_1/dense2/bias:0 [64] 64
net1/cbhg/highwaynet_2/dense1/kernel:0 [64, 64] 4096
net1/cbhg/highwaynet_2/dense1/bias:0 [64] 64
net1/cbhg/highwaynet_2/dense2/kernel:0 [64, 64] 4096
net1/cbhg/highwaynet_2/dense2/bias:0 [64] 64
net1/cbhg/highwaynet_3/dense1/kernel:0 [64, 64] 4096
net1/cbhg/highwaynet_3/dense1/bias:0 [64] 64
net1/cbhg/highwaynet_3/dense2/kernel:0 [64, 64] 4096
net1/cbhg/highwaynet_3/dense2/bias:0 [64] 64
net1/cbhg/gru/bidirectional_rnn/fw/gru_cell/gates/kernel:0 [128, 128] 16384
net1/cbhg/gru/bidirectional_rnn/fw/gru_cell/gates/bias:0 [128] 128
net1/cbhg/gru/bidirectional_rnn/fw/gru_cell/candidate/kernel:0 [128, 64] 8192
net1/cbhg/gru/bidirectional_rnn/fw/gru_cell/candidate/bias:0 [64] 64
net1/cbhg/gru/bidirectional_rnn/bw/gru_cell/gates/kernel:0 [128, 128] 16384
net1/cbhg/gru/bidirectional_rnn/bw/gru_cell/gates/bias:0 [128] 128
net1/cbhg/gru/bidirectional_rnn/bw/gru_cell/candidate/kernel:0 [128, 64] 8192
net1/cbhg/gru/bidirectional_rnn/bw/gru_cell/candidate/bias:0 [64] 64
net1/dense/kernel:0 [128, 61] 7808
net1/dense/bias:0 [61] 61
net2/prenet/dense1/kernel:0 [61, 256] 15616
net2/prenet/dense1/bias:0 [256] 256
net2/prenet/dense2/kernel:0 [256, 128] 32768
net2/prenet/dense2/bias:0 [128] 128
net2/cbhg_mel/conv1d_banks/num_1/conv1d/conv1d/kernel:0 [1, 128, 128] 16384
net2/cbhg_mel/conv1d_banks/num_1/normalize/beta:0 [128] 128
net2/cbhg_mel/conv1d_banks/num_1/normalize/gamma:0 [128] 128
net2/cbhg_mel/conv1d_banks/num_2/conv1d/conv1d/kernel:0 [2, 128, 128] 32768
net2/cbhg_mel/conv1d_banks/num_2/normalize/beta:0 [128] 128
net2/cbhg_mel/conv1d_banks/num_2/normalize/gamma:0 [128] 128
net2/cbhg_mel/conv1d_banks/num_3/conv1d/conv1d/kernel:0 [3, 128, 128] 49152
net2/cbhg_mel/conv1d_banks/num_3/normalize/beta:0 [128] 128
net2/cbhg_mel/conv1d_banks/num_3/normalize/gamma:0 [128] 128
net2/cbhg_mel/conv1d_banks/num_4/conv1d/conv1d/kernel:0 [4, 128, 128] 65536
net2/cbhg_mel/conv1d_banks/num_4/normalize/beta:0 [128] 128
net2/cbhg_mel/conv1d_banks/num_4/normalize/gamma:0 [128] 128
net2/cbhg_mel/conv1d_banks/num_5/conv1d/conv1d/kernel:0 [5, 128, 128] 81920
net2/cbhg_mel/conv1d_banks/num_5/normalize/beta:0 [128] 128
net2/cbhg_mel/conv1d_banks/num_5/normalize/gamma:0 [128] 128
net2/cbhg_mel/conv1d_banks/num_6/conv1d/conv1d/kernel:0 [6, 128, 128] 98304
net2/cbhg_mel/conv1d_banks/num_6/normalize/beta:0 [128] 128
net2/cbhg_mel/conv1d_banks/num_6/normalize/gamma:0 [128] 128
net2/cbhg_mel/conv1d_banks/num_7/conv1d/conv1d/kernel:0 [7, 128, 128] 114688
net2/cbhg_mel/conv1d_banks/num_7/normalize/beta:0 [128] 128
net2/cbhg_mel/conv1d_banks/num_7/normalize/gamma:0 [128] 128
net2/cbhg_mel/conv1d_banks/num_8/conv1d/conv1d/kernel:0 [8, 128, 128] 131072
net2/cbhg_mel/conv1d_banks/num_8/normalize/beta:0 [128] 128
net2/cbhg_mel/conv1d_banks/num_8/normalize/gamma:0 [128] 128
net2/cbhg_mel/conv1d_1/conv1d/kernel:0 [3, 1024, 128] 393216
net2/cbhg_mel/normalize/beta:0 [128] 128
net2/cbhg_mel/normalize/gamma:0 [128] 128
net2/cbhg_mel/conv1d_2/conv1d/kernel:0 [3, 128, 128] 49152
net2/cbhg_mel/highwaynet_0/dense1/kernel:0 [128, 128] 16384
net2/cbhg_mel/highwaynet_0/dense1/bias:0 [128] 128
net2/cbhg_mel/highwaynet_0/dense2/kernel:0 [128, 128] 16384
net2/cbhg_mel/highwaynet_0/dense2/bias:0 [128] 128
net2/cbhg_mel/highwaynet_1/dense1/kernel:0 [128, 128] 16384
net2/cbhg_mel/highwaynet_1/dense1/bias:0 [128] 128
net2/cbhg_mel/highwaynet_1/dense2/kernel:0 [128, 128] 16384
net2/cbhg_mel/highwaynet_1/dense2/bias:0 [128] 128
net2/cbhg_mel/highwaynet_2/dense1/kernel:0 [128, 128] 16384
net2/cbhg_mel/highwaynet_2/dense1/bias:0 [128] 128
net2/cbhg_mel/highwaynet_2/dense2/kernel:0 [128, 128] 16384
net2/cbhg_mel/highwaynet_2/dense2/bias:0 [128] 128
net2/cbhg_mel/highwaynet_3/dense1/kernel:0 [128, 128] 16384
net2/cbhg_mel/highwaynet_3/dense1/bias:0 [128] 128
net2/cbhg_mel/highwaynet_3/dense2/kernel:0 [128, 128] 16384
net2/cbhg_mel/highwaynet_3/dense2/bias:0 [128] 128
net2/cbhg_mel/highwaynet_4/dense1/kernel:0 [128, 128] 16384
net2/cbhg_mel/highwaynet_4/dense1/bias:0 [128] 128
net2/cbhg_mel/highwaynet_4/dense2/kernel:0 [128, 128] 16384
net2/cbhg_mel/highwaynet_4/dense2/bias:0 [128] 128
net2/cbhg_mel/highwaynet_5/dense1/kernel:0 [128, 128] 16384
net2/cbhg_mel/highwaynet_5/dense1/bias:0 [128] 128
net2/cbhg_mel/highwaynet_5/dense2/kernel:0 [128, 128] 16384
net2/cbhg_mel/highwaynet_5/dense2/bias:0 [128] 128
net2/cbhg_mel/highwaynet_6/dense1/kernel:0 [128, 128] 16384
net2/cbhg_mel/highwaynet_6/dense1/bias:0 [128] 128
net2/cbhg_mel/highwaynet_6/dense2/kernel:0 [128, 128] 16384
net2/cbhg_mel/highwaynet_6/dense2/bias:0 [128] 128
net2/cbhg_mel/highwaynet_7/dense1/kernel:0 [128, 128] 16384
net2/cbhg_mel/highwaynet_7/dense1/bias:0 [128] 128
net2/cbhg_mel/highwaynet_7/dense2/kernel:0 [128, 128] 16384
net2/cbhg_mel/highwaynet_7/dense2/bias:0 [128] 128
net2/cbhg_mel/gru/bidirectional_rnn/fw/gru_cell/gates/kernel:0 [256, 256] 65536
net2/cbhg_mel/gru/bidirectional_rnn/fw/gru_cell/gates/bias:0 [256] 256
net2/cbhg_mel/gru/bidirectional_rnn/fw/gru_cell/candidate/kernel:0 [256, 128] 32768
net2/cbhg_mel/gru/bidirectional_rnn/fw/gru_cell/candidate/bias:0 [128] 128
net2/cbhg_mel/gru/bidirectional_rnn/bw/gru_cell/gates/kernel:0 [256, 256] 65536
net2/cbhg_mel/gru/bidirectional_rnn/bw/gru_cell/gates/bias:0 [256] 256
net2/cbhg_mel/gru/bidirectional_rnn/bw/gru_cell/candidate/kernel:0 [256, 128] 32768
net2/cbhg_mel/gru/bidirectional_rnn/bw/gru_cell/candidate/bias:0 [128] 128
net2/pred_mel/kernel:0 [256, 90] 23040
net2/pred_mel/bias:0 [90] 90
net2/dense/kernel:0 [90, 128] 11520
net2/dense/bias:0 [128] 128
net2/cbhg_linear/conv1d_banks/num_1/conv1d/conv1d/kernel:0 [1, 128, 128] 16384
net2/cbhg_linear/conv1d_banks/num_1/normalize/beta:0 [128] 128
net2/cbhg_linear/conv1d_banks/num_1/normalize/gamma:0 [128] 128
net2/cbhg_linear/conv1d_banks/num_2/conv1d/conv1d/kernel:0 [2, 128, 128] 32768
net2/cbhg_linear/conv1d_banks/num_2/normalize/beta:0 [128] 128
net2/cbhg_linear/conv1d_banks/num_2/normalize/gamma:0 [128] 128
net2/cbhg_linear/conv1d_banks/num_3/conv1d/conv1d/kernel:0 [3, 128, 128] 49152
net2/cbhg_linear/conv1d_banks/num_3/normalize/beta:0 [128] 128
net2/cbhg_linear/conv1d_banks/num_3/normalize/gamma:0 [128] 128
net2/cbhg_linear/conv1d_banks/num_4/conv1d/conv1d/kernel:0 [4, 128, 128] 65536
net2/cbhg_linear/conv1d_banks/num_4/normalize/beta:0 [128] 128
net2/cbhg_linear/conv1d_banks/num_4/normalize/gamma:0 [128] 128
net2/cbhg_linear/conv1d_banks/num_5/conv1d/conv1d/kernel:0 [5, 128, 128] 81920
net2/cbhg_linear/conv1d_banks/num_5/normalize/beta:0 [128] 128
net2/cbhg_linear/conv1d_banks/num_5/normalize/gamma:0 [128] 128
net2/cbhg_linear/conv1d_banks/num_6/conv1d/conv1d/kernel:0 [6, 128, 128] 98304
net2/cbhg_linear/conv1d_banks/num_6/normalize/beta:0 [128] 128
net2/cbhg_linear/conv1d_banks/num_6/normalize/gamma:0 [128] 128
net2/cbhg_linear/conv1d_banks/num_7/conv1d/conv1d/kernel:0 [7, 128, 128] 114688
net2/cbhg_linear/conv1d_banks/num_7/normalize/beta:0 [128] 128
net2/cbhg_linear/conv1d_banks/num_7/normalize/gamma:0 [128] 128
net2/cbhg_linear/conv1d_banks/num_8/conv1d/conv1d/kernel:0 [8, 128, 128] 131072
net2/cbhg_linear/conv1d_banks/num_8/normalize/beta:0 [128] 128
net2/cbhg_linear/conv1d_banks/num_8/normalize/gamma:0 [128] 128
net2/cbhg_linear/conv1d_1/conv1d/kernel:0 [3, 1024, 128] 393216
net2/cbhg_linear/normalize/beta:0 [128] 128
net2/cbhg_linear/normalize/gamma:0 [128] 128
net2/cbhg_linear/conv1d_2/conv1d/kernel:0 [3, 128, 128] 49152
net2/cbhg_linear/highwaynet_0/dense1/kernel:0 [128, 128] 16384
net2/cbhg_linear/highwaynet_0/dense1/bias:0 [128] 128
net2/cbhg_linear/highwaynet_0/dense2/kernel:0 [128, 128] 16384
net2/cbhg_linear/highwaynet_0/dense2/bias:0 [128] 128
net2/cbhg_linear/highwaynet_1/dense1/kernel:0 [128, 128] 16384
net2/cbhg_linear/highwaynet_1/dense1/bias:0 [128] 128
net2/cbhg_linear/highwaynet_1/dense2/kernel:0 [128, 128] 16384
net2/cbhg_linear/highwaynet_1/dense2/bias:0 [128] 128
net2/cbhg_linear/highwaynet_2/dense1/kernel:0 [128, 128] 16384
net2/cbhg_linear/highwaynet_2/dense1/bias:0 [128] 128
net2/cbhg_linear/highwaynet_2/dense2/kernel:0 [128, 128] 16384
net2/cbhg_linear/highwaynet_2/dense2/bias:0 [128] 128
net2/cbhg_linear/highwaynet_3/dense1/kernel:0 [128, 128] 16384
net2/cbhg_linear/highwaynet_3/dense1/bias:0 [128] 128
net2/cbhg_linear/highwaynet_3/dense2/kernel:0 [128, 128] 16384
net2/cbhg_linear/highwaynet_3/dense2/bias:0 [128] 128
net2/cbhg_linear/highwaynet_4/dense1/kernel:0 [128, 128] 16384
net2/cbhg_linear/highwaynet_4/dense1/bias:0 [128] 128
net2/cbhg_linear/highwaynet_4/dense2/kernel:0 [128, 128] 16384
net2/cbhg_linear/highwaynet_4/dense2/bias:0 [128] 128
net2/cbhg_linear/highwaynet_5/dense1/kernel:0 [128, 128] 16384
net2/cbhg_linear/highwaynet_5/dense1/bias:0 [128] 128
net2/cbhg_linear/highwaynet_5/dense2/kernel:0 [128, 128] 16384
net2/cbhg_linear/highwaynet_5/dense2/bias:0 [128] 128
net2/cbhg_linear/highwaynet_6/dense1/kernel:0 [128, 128] 16384
net2/cbhg_linear/highwaynet_6/dense1/bias:0 [128] 128
net2/cbhg_linear/highwaynet_6/dense2/kernel:0 [128, 128] 16384
net2/cbhg_linear/highwaynet_6/dense2/bias:0 [128] 128
net2/cbhg_linear/highwaynet_7/dense1/kernel:0 [128, 128] 16384
net2/cbhg_linear/highwaynet_7/dense1/bias:0 [128] 128
net2/cbhg_linear/highwaynet_7/dense2/kernel:0 [128, 128] 16384
net2/cbhg_linear/highwaynet_7/dense2/bias:0 [128] 128
net2/cbhg_linear/gru/bidirectional_rnn/fw/gru_cell/gates/kernel:0 [256, 256] 65536
net2/cbhg_linear/gru/bidirectional_rnn/fw/gru_cell/gates/bias:0 [256] 256
net2/cbhg_linear/gru/bidirectional_rnn/fw/gru_cell/candidate/kernel:0 [256, 128] 32768
net2/cbhg_linear/gru/bidirectional_rnn/fw/gru_cell/candidate/bias:0 [128] 128
net2/cbhg_linear/gru/bidirectional_rnn/bw/gru_cell/gates/kernel:0 [256, 256] 65536
net2/cbhg_linear/gru/bidirectional_rnn/bw/gru_cell/gates/bias:0 [256] 256
net2/cbhg_linear/gru/bidirectional_rnn/bw/gru_cell/candidate/kernel:0 [256, 128] 32768
net2/cbhg_linear/gru/bidirectional_rnn/bw/gru_cell/candidate/bias:0 [128] 128
net2/pred_spec/kernel:0 [256, 569] 145664
net2/pred_spec/bias:0 [569] 569�[36m
Total #vars=204, #params=3587856, size=13.69MB�[0m
�[32m[0130 22:23:11 @base.py:209]�[0m Setup callbacks graph ...
�[32m[0130 22:23:12 @summary.py:38]�[0m Maintain moving average summary of 0 tensors in collection MOVING_SUMMARY_OPS.
�[32m[0130 22:23:12 @summary.py:75]�[0m Summarizing collection 'summaries' of size 2.
�[32m[0130 22:23:19 @common.py:147]�[0m �[4m�[5m�[31mERR�[0m Cannot batch data. Perhaps they are of inconsistent shape?
Traceback (most recent call last):
File "C:\Users\Yash\anaconda\envs\dlwin36\lib\site-packages\tensorpack\dataflow\common.py", line 145, in _aggregate_batch
np.asarray([x[k] for x in data_holder], dtype=tp))
File "C:\Users\Yash\anaconda\envs\dlwin36\lib\site-packages\numpy\core\numeric.py", line 501, in asarray
return array(a, dtype, copy=False, order=order)
MemoryError
�[32m[0130 22:23:19 @common.py:150]�[0m �[4m�[5m�[31mERR�[0m Shape of all arrays to be batched: [(334, 569),
(334, 569),
(334, 569),
(334, 569),
(334, 569),
(334, 569),
(334, 569),
(334, 569),
(334, 569),
(334, 569),
(334, 569),
(334, 569),
(334, 569),
(334, 569),
(334, 569),
(334, 569)]

@YashBangera7
Copy link
Author

I believe it had something to do with the set CUDA_VISIBLE_DEVICES=0 keyword .

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants