Skip to content

ananonymousauthor-1024/AR-Trip

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 

Repository files navigation

AR-Trip

Brief Introduction

The implementation of AR-Trip(Anti Repetition for Trip Recommendation). We devise a cycle-aware framework to mitigate the repetition, including drifting, guiding and adapting.

Environmental Requirements

We run the code on the device with RTX3060(12 GB), i5 12400F, and 16G memory. Please Install the dependencies via anaconda:

Create virtual environment

conda create -n AR-Trip python=3.9.18

Activate environment

conda activate AR-Trip

Install pytorch and cuda toolkit

conda install pytorch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 pytorch-cuda=11.6 -c pytorch -c nvidia

Install other requirements

conda install numpy pandas
pip install scikit-learn

Folder Structure

Folder Name Description
asset Metadata and preprocessing process
results Storage related experimental results
src the source code of AR-Trip
README.md This instruction document
run.bat The necessary command-line parameters for running

How to run this Program

The detailed operation mode and parameter settings of each model can be found in run.bat.

@echo off

REM Setting Python Interpreter Path
set python_path=(alter to your python path)

python .\src\run.py --dataset Osak --lr 0.001 --batch_size 4 --d_model 32 --decoding_type Adapting --training_type Penalty --Drifting --Guiding

python .\src\run.py --dataset Glas --lr 0.001 --batch_size 4 --d_model 32 --decoding_type Adapting --training_type Penalty --Drifting --Guiding

python .\src\run.py --dataset Edin --lr 0.001 --batch_size 16 --d_model 32 --decoding_type Adapting --training_type Penalty --Drifting --Guiding

python .\src\run.py --dataset Toro --lr 0.001 --batch_size 8 --d_model 32 --decoding_type Adapting --training_type Penalty --Drifting --Guiding

If your operating system is Windows, you can use the command In the working directory as

.\run.bat

to run this script file directly. You can also directly paste commands into the terminal to run the program just like

python .\src\run.py --dataset Glas --lr 0.001 --batch_size 4 --d_model 32 --decoding_type Adapting --training_type Penalty --Drifting --Guiding

Hope such instruction could help you with our projects. Any comments and feedback are appreciated.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published