-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
164 lines (132 loc) · 6.36 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
from __future__ import print_function
import os
import glob
import os.path as osp
import argparse
import sys
import h5py
import time
import datetime
import numpy as np
from tabulate import tabulate
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
from torch.optim import lr_scheduler
from torch.distributions import Bernoulli
from utils import Logger, read_json, write_json, save_checkpoint
from models import *
from rewards import compute_reward
parser = argparse.ArgumentParser("Pytorch code for unsupervised video summarization with REINFORCE")
# Model options
parser.add_argument('--input-dim', type=int, default=1024, help="input dimension (default: 1024)")
parser.add_argument('--hidden-dim', type=int, default=256, help="hidden unit dimension of DSN (default: 256)")
parser.add_argument('--num-layers', type=int, default=1, help="number of RNN layers (default: 1)")
parser.add_argument('--rnn-cell', type=str, default='Bi-lstm', help="RNN cell type (default: lstm)")
# Optimization options
parser.add_argument('--lr', type=float, default=1e-02, help="learning rate (default: 1e-05)")
parser.add_argument('--weight-decay', type=float, default=1e-05, help="weight decay rate (default: 1e-05)")
parser.add_argument('--max-epoch', type=int, default=10, help="maximum epoch for training (default: 60)")
parser.add_argument('--stepsize', type=int, default=10, help="how many steps to decay learning rate (default: 30)")
parser.add_argument('--gamma', type=float, default=0.1, help="learning rate decay (default: 0.1)")
parser.add_argument('--num-episode', type=int, default=1, help="number of episodes (default: 5)")
parser.add_argument('--start_idx', type=int, default=0, help="number of episodes (default: 5)")
parser.add_argument('--number_of_picks', type=int, default=2, help="number of frames to select")
parser.add_argument('--path_to_features', type=str, default='path', help="path to weighted features")
parser.add_argument('--classes', type=int, default=19, help="number of classes in dataset")
parser.add_argument('--beta', type=float, default=0.01, help="weight for summary length penalty term (default: 0.01)")
# Misc
parser.add_argument('--seed', type=int, default=1, help="random seed (default: 1)")
parser.add_argument('--gpu', type=str, default='0', help="which gpu devices to use")
parser.add_argument('--use-cpu', action='store_true', help="use cpu device")
parser.add_argument('--evaluate', action='store_true', help="whether to do evaluation only")
parser.add_argument('--save-dir', type=str, default='log', help="path to save output (default: 'log/')")
parser.add_argument('--resume', type=str, default='', help="path to resume file")
parser.add_argument('--verbose', action='store_true', help="whether to show detailed test results")
parser.add_argument('--save-results', action='store_true', help="whether to save output results")
args = parser.parse_args()
torch.manual_seed(args.seed)
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
use_gpu = torch.cuda.is_available()
if args.use_cpu: use_gpu = False
def main():
if not args.evaluate:
sys.stdout = Logger(osp.join(args.save_dir, 'log_train.txt'))
else:
sys.stdout = Logger(osp.join(args.save_dir, 'log_test.txt'))
print("==========\nArgs:{}\n==========".format(args))
if use_gpu:
print("Currently using GPU {}".format(args.gpu))
cudnn.benchmark = True
torch.cuda.manual_seed_all(args.seed)
else:
print("Currently using CPU")
print("Initialize dataset")
fpath = args.path_to_features+'*'
features=[]
fpaths=[]
for f in sorted(glob.glob(fpath)):
fpaths.append(f)
f1=np.load(f,allow_pickle=True)
features.append(f1)
features_all=(np.stack(features))
dist = features_all.shape[0]
number_of_picks = args.number_of_picks
start=args.start_idx
features=features_all[start:start+dist,:]
model = DSN(in_dim=args.classes, hid_dim=args.hidden_dim)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
if args.stepsize > 0:
scheduler = lr_scheduler.StepLR(optimizer, step_size=args.stepsize, gamma=args.gamma)
if args.resume:
print("Loading checkpoint from '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
model.load_state_dict(checkpoint)
else:
start_epoch = 0
if use_gpu:
model = nn.DataParallel(model).cuda()
print("==> Start training")
start_time = time.time()
model.train()
baseline=0.
best_reward=0.0
best_pi=[]
os.system('rm -r ./selection/')
os.system('mkdir selection')
for epoch in range(start_epoch, args.max_epoch):
seq = features
seq = torch.from_numpy(seq).unsqueeze(0) # input shape (1, seq_len, dim)
if use_gpu: seq = seq.cuda()
probs = model(seq) # output shape (1, seq_len, 1)
cost = args.beta * (probs.mean() - 0.5)**2
m = Bernoulli(probs)
epis_rewards = []
for _ in range(args.num_episode):
actions = m.sample()
log_probs = m.log_prob(actions)
reward,pick_idxs = compute_reward(seq, actions,probs,nc=args.classes, picks=number_of_picks, use_gpu=use_gpu)
if(reward>best_reward):
best_reward=reward
best_pi=pick_idxs
expected_reward = log_probs.mean() * (reward - baseline)
cost -= expected_reward # minimize negative expected reward
epis_rewards.append(reward.item())
optimizer.zero_grad()
cost.backward()
optimizer.step()
baseline = 0.9 * baseline + 0.1 * np.mean(epis_rewards) # update baseline reward via moving average
print("epoch {}/{}\t reward {}\t".format(epoch+1, args.max_epoch, np.mean(epis_rewards)))
f=open('selection/'+str(start)+'.txt','w')
for idx in best_pi:
f.write(fpaths[start+idx]+'\n')
f.close()
elapsed = round(time.time() - start_time)
elapsed = str(datetime.timedelta(seconds=elapsed))
print("Finished. Total elapsed time (h:m:s): {}".format(elapsed))
model_state_dict = model.module.state_dict() if use_gpu else model.state_dict()
model_save_path = osp.join(args.save_dir, 'model_epoch' + str(args.max_epoch) + '.pth.tar')
save_checkpoint(model_state_dict, model_save_path)
print("Model saved to {}".format(model_save_path))
if __name__ == '__main__':
main()