-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpuncture_am.py
444 lines (372 loc) · 16.5 KB
/
puncture_am.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
"""Code to construct puncture initial data for single black hole."""
import sys
from numpy import zeros, size, sqrt, linspace
from scipy.sparse import csr_matrix, lil_matrix
import scipy.linalg as la
from scipy.sparse.linalg import spsolve
class EllipticSolver:
"""Class Elliptic solves Poisson-type elliptic equations of the form:
D^2 sol + fct sol = rhs
where
- D^2 is the flat Laplace operator
- fct and rhs are user-supplied functions of the coordinates x, y, z,
- and sol is the solution.
To use this class:
- initialize the class, providing Cartesian coordinates x, y, and z
- call setup_matrix(fct) to set up the operator
- call setup_rhs(rhs) to set up the right-hand side
- then a call to solve() returns the solution sol
"""
def __init__(self, x, y, z):
"""Constructor - provide Cartesian coordinates, all of length n_grid,
as arguments.
"""
print(" Setting up Poisson solver...")
self.n_grid = size(x)
self.delta = x[1] - x[0]
# set up storage for matrix, solution, r.h.s.
# Note: "sol" and "rhs" will store functions in 3d format, while
# "sol_1d" and "rhs_1d" will store functions in 1d format using
# super-index
nnn = self.n_grid ** 3
self.rhs_1d = zeros(nnn)
self.A = lil_matrix((nnn, nnn))
self.sol = zeros((self.n_grid, self.n_grid, self.n_grid))
self.rad = zeros((self.n_grid, self.n_grid, self.n_grid))
# compute radius
for i in range(0, self.n_grid):
for j in range(0, self.n_grid):
for k in range(0, self.n_grid):
rad2 = x[i] ** 2 + y[j] ** 2 + z[k] ** 2
self.rad[i, j, k] = sqrt(rad2)
def setup_matrix(self, fct):
"""Set up matrix A."""
n_grid = self.n_grid
# Use Robin boundary conditions (B.30) to set up boundaries
i = 0 # lower x-boundary
for j in range(0, n_grid):
for k in range(0, n_grid):
index = self.super_index(i, j, k)
self.A[index, index] = self.rad[i, j, k]
self.A[index, index + 1] = -self.rad[i + 1, j, k]
i = n_grid - 1 # upper x-boundary
for j in range(0, n_grid):
for k in range(0, n_grid):
index = self.super_index(i, j, k)
self.A[index, index] = self.rad[i, j, k]
self.A[index, index - 1] = -self.rad[i - 1, j, k]
j = 0 # lower y-boundary
for i in range(1, n_grid - 1):
for k in range(0, n_grid):
index = self.super_index(i, j, k)
self.A[index, index] = self.rad[i, j, k]
self.A[index, index + n_grid] = -self.rad[i, j + 1, k]
j = n_grid - 1 # upper y-boundary
for i in range(1, n_grid - 1):
for k in range(0, n_grid):
index = self.super_index(i, j, k)
self.A[index, index] = self.rad[i, j, k]
self.A[index, index - n_grid] = -self.rad[i, j - 1, k]
k = 0 # lower z-boundary
for i in range(1, n_grid - 1):
for j in range(1, n_grid - 1):
index = self.super_index(i, j, k)
self.A[index, index] = self.rad[i, j, k]
self.A[index, index + n_grid * n_grid] = -self.rad[i, j, k + 1]
k = n_grid - 1 # upper z-boundary
for i in range(1, n_grid - 1):
for j in range(1, n_grid - 1):
index = self.super_index(i, j, k)
self.A[index, index] = self.rad[i, j, k]
self.A[index, index - n_grid * n_grid] = -self.rad[i, j, k - 1]
# use (B.29) to fill matrix in interior
for i in range(1, n_grid - 1):
for j in range(1, n_grid - 1):
for k in range(1, n_grid - 1):
index = self.super_index(i, j, k)
# diagonal element
self.A[index, index] = -6. + self.delta ** 2 * fct[i, j, k]
# off-diagonal elements
self.A[index, index - 1] = 1.0
self.A[index, index + 1] = 1.0
self.A[index, index - n_grid] = 1.0
self.A[index, index + n_grid] = 1.0
self.A[index, index - n_grid * n_grid] = 1.0
self.A[index, index + n_grid * n_grid] = 1.0
def setup_rhs(self, rhs):
"""Setup right-hand side of matrix equation"""
n_grid = self.n_grid
for i in range(1, n_grid - 1):
for j in range(1, n_grid - 1):
for k in range(1, n_grid - 1):
index = self.super_index(i, j, k)
self.rhs_1d[index] = self.delta ** 2 * rhs[i, j, k]
def solve(self):
"""Interface to scipy.linalg matrix solver,
returns sol (in 3d format)."""
spA = self.A.tocsr()
# solve matrix using scipy.linalg interface...
sol_1d = spsolve(spA, self.rhs_1d, permc_spec = 'MMD_AT_PLUS_A')
# ... then translate from superindex to 3d
for i in range(0, self.n_grid):
for j in range(0, self.n_grid):
for k in range(0, self.n_grid):
index = self.super_index(i, j, k)
self.sol[i, j, k] = sol_1d[index]
return self.sol
def super_index(self, i, j, k):
"""Compute super index, see (B.28)."""
return i + self.n_grid * (j + self.n_grid * k)
class Puncture:
"""Class that handles construction of puncture data.
To use this class,
- initialize class with physical parameters as arguments
- then call construct_solution.
"""
def __init__(self, bh_loc, ang_mom, n_grid, x_out):
"""Arguments to constructor specify physical parameters:
- location of puncture (bh_loc)
- linear momentum (lin_mom)
- size of grid (n_grid)
- outer boundary (x_out).
"""
self.bh_loc = bh_loc
self.ang_mom = ang_mom
# echo out parameters
print(" Constructing class Puncture for single black hole")
print(" at bh_loc = (", bh_loc[0], ",", bh_loc[1], ",",
bh_loc[2], ")")
print(" with angular momentum p = (", ang_mom[0], ",",
ang_mom[1], ",", ang_mom[2], ")")
print(" Using", n_grid,"\b^3 gridpoints with outer boundary at", x_out)
# set up grid
self.n_grid = n_grid
self.x_out = x_out
self.delta = 2.0 * x_out / n_grid
# set up coordinates: use cell-centered grid covering (-x_out, x_out)
# in each dimension; see (B.14)
half_delta = self.delta / 2.0
self.x = linspace(half_delta - x_out, x_out -
half_delta, n_grid)
self.y = linspace(half_delta - x_out, x_out -
half_delta, n_grid)
self.z = linspace(half_delta - x_out, x_out -
half_delta, n_grid)
# allocate elliptic solver
self.solver = EllipticSolver(self.x, self.y, self.z)
# allocate memory for functions u, alpha, beta, and residual
self.alpha = zeros((n_grid, n_grid, n_grid))
self.beta = zeros((n_grid, n_grid, n_grid))
self.u = zeros((n_grid, n_grid, n_grid))
self.res = zeros((n_grid, n_grid, n_grid))
def construct_solution(self, tol, it_max):
"""Construct solution iteratively, provide tolerance and maximum
number of iterations as arguments."""
self.setup_alpha_beta()
residual_norm = self.residual()
print(" Initial Residual = ", residual_norm)
print(" Using up to", it_max, "iteration steps to reach tolerance of",
tol)
# now iterate...
it_step = 0
while residual_norm > tol and it_step < it_max:
it_step += 1
self.update_u()
residual_norm = self.residual()
print(" Residual after", it_step, "iterations :", residual_norm)
if (residual_norm < tol):
print(" Done!")
else:
print(" Giving up...")
def update_u(self):
"""Function that updates u using Poisson solver;
takes one iteration step.
"""
# set up linear term and right-hand side for SolvePoisson...
n_grid = self.n_grid
fct = zeros((n_grid, n_grid, n_grid))
rhs = zeros((n_grid, n_grid, n_grid))
for i in range(1, n_grid - 1):
for j in range(1, n_grid - 1):
for k in range(1, n_grid - 1):
# compute h' from (B.39)
temp = self.alpha[i, j, k] * (1.0 + self.u[i, j, k]) + 1.0
fct[i, j, k] = (-7.0 * self.beta[i, j, k] *
self.alpha[i, j, k] / temp ** 8)
rhs[i, j, k] = -self.res[i, j, k]
# now update Poisson solver
self.solver.setup_matrix(fct)
# set up right-hand side
self.solver.setup_rhs(rhs)
# solve to find delta_u, see (B.36)
delta_u = self.solver.solve()
# update u
self.u += delta_u
def residual(self):
"""Evaluate residual, see (B.35)."""
residual_norm = 0.0
for i in range(1, self.n_grid - 1):
for j in range(1, self.n_grid - 1):
for k in range(1, self.n_grid - 1):
# compute left-hand side: Laplace operator
ddx = (self.u[i + 1, j, k] - 2.0 * self.u[i, j, k] +
self.u[i - 1, j, k])
ddy = (self.u[i, j + 1, k] - 2.0 * self.u[i, j, k] +
self.u[i, j - 1, k])
ddz = (self.u[i, j, k + 1] - 2.0 * self.u[i, j, k] +
self.u[i, j, k - 1])
lhs = (ddx + ddy + ddz) / self.delta ** 2
# compute right-hand side,
# recall h = - beta/(alpha + alpha u + 1)^7
temp = self.alpha[i, j, k] * (1.0 + self.u[i, j, k]) + 1.0
rhs = -self.beta[i, j, k] / temp ** 7
# then compute difference to get residual, see (B.35)
self.res[i, j, k] = lhs - rhs
residual_norm += self.res[i, j, k] ** 2
residual_norm = sqrt(residual_norm) * self.delta ** 3
return residual_norm
def setup_alpha_beta(self):
"""Set up functions alpha and beta."""
n_grid = self.n_grid
j_x = self.ang_mom[0]
j_y = self.ang_mom[1]
j_z = self.ang_mom[2]
for i in range(0, n_grid):
for j in range(0, n_grid):
for k in range(0, n_grid):
s_x = self.x[i] - self.bh_loc[0]
s_y = self.y[j] - self.bh_loc[1]
s_z = self.z[k] - self.bh_loc[2]
s2 = s_x ** 2 + s_y ** 2 + s_z ** 2
s_bh = sqrt(s2)
s3 = s_bh**3
l_x = s_x / s_bh
l_y = s_y / s_bh
l_z = s_z / s_bh
jxl_x = j_y * l_z - j_z * l_y
jxl_y = j_z * l_x - j_x * l_z
jxl_z = j_x * l_y - j_y * l_x
# construct extrinsic curvature, see Eq. (3.43)
fac2 = 6.0 / (2.0 * s3)
A_xx = fac2 * (2.0 * l_x * jxl_x)
A_yy = fac2 * (2.0 * l_y * jxl_y)
A_zz = fac2 * (2.0 * l_z * jxl_z)
A_xy = fac2 * (l_x * jxl_y + l_y * jxl_x)
A_xz = fac2 * (l_x * jxl_z + l_z * jxl_x)
A_yz = fac2 * (l_y * jxl_z + l_z * jxl_y)
# compute A_{ij} A^{ij}
A2 = (
A_xx ** 2 + A_yy ** 2 + A_zz ** 2 +
2.0*(A_xy ** 2 + A_xz ** 2 + A_yz ** 2)
)
# now compute alpha and beta from (3.47) and (3.49)
self.alpha[i, j, k] = 2.0 * s_bh
self.beta[i, j, k] = self.alpha[i, j, k] ** 7 * A2 / 8.0
def write_to_file(self):
"""Function that writes solution to file."""
filename = "Puncture_" + str(self.n_grid) + "_%.1f-%.1f-%.1f_"%(self.ang_mom) + str(self.x_out) + "_am"
filename = filename + ".data"
out = open(filename, "w")
if out:
k = self.n_grid // 2
out.write(
"# Data for black hole at x = (%f,%f,%f)\n"
% (self.bh_loc[0], self.bh_loc[1], self.bh_loc[2])
)
out.write("# with angular momentum P = (%f, %f, %f)\n" %
(self.ang_mom))
out.write("# in plane for z = %e \n" % (self.z[k]))
out.write("# x y u \n")
out.write("#============================================\n")
for i in range(0, self.n_grid):
for j in range(0, self.n_grid):
out.write("%e %e %e\n" % (self.x[i], self.y[j],
self.u[i, j, k]))
out.write("\n")
out.close()
else:
print(" Could not open file", filename,"in write_to_file()")
print(" Check permissions?")
#
#=====================================================================
# Main routine: defines parameters, sets up puncture solver, and
# then finds solution
#=====================================================================
#
def main():
"""Main routine..."""
print(" -------------------------------------------------------")
print(" --- puncture.py --- use flag -h for list of options ---")
print(" -------------------------------------------------------")
#
# set default values for variables
#
# location of black hole:
loc_x = 0.0
loc_y = 0.0
loc_z = 0.0
# angular momentum of black hole:
j_x = 0.0
j_y = 0.0
j_z = 1.0
# number of grid points
n_grid = 16
# location of outer boundary
x_out = 4.0
# tolerance and maximum number of iterations
tol = 1.0e-12
it_max = 50
#
# now look for flags to overwrite default values
#
for i in range(len(sys.argv)):
if sys.argv[i] == "-h":
usage()
return
if sys.argv[i] == "-n_grid":
n_grid = int(sys.argv[i+1])
if sys.argv[i] == "-x_out":
x_out = float(sys.argv[i+1])
if sys.argv[i] == "-loc_x":
loc_x = float(sys.argv[i+1])
if sys.argv[i] == "-loc_y":
loc_y = float(sys.argv[i+1])
if sys.argv[i] == "-loc_z":
loc_z = float(sys.argv[i+1])
if sys.argv[i] == "-j_x":
j_x = float(sys.argv[i+1])
if sys.argv[i] == "-j_y":
j_y = float(sys.argv[i+1])
if sys.argv[i] == "-j_z":
j_z = float(sys.argv[i+1])
if sys.argv[i] == "-tol":
tol = float(sys.argv[i+1])
if sys.argv[i] == "-it_max":
it_max = int(sys.argv[i+1])
# location of puncture
bh_loc = ( loc_x, loc_y, loc_z )
# linear momentum
ang_mom = ( j_x, j_y, j_z )
#
# set up Puncture solver
black_hole = Puncture(bh_loc, ang_mom, n_grid, x_out)
#
# and construct solution
black_hole.construct_solution(tol, it_max)
#
# and write results to file
black_hole.write_to_file()
def usage():
print("Constructs puncture initial data for single black hole.")
print("")
print("The following options can be used to over-write default parameters")
print("\t-n_grid: number of grid points [default: 16]")
print("\t-x_out: location of outer boundary [4.0]")
print("\t-loc_x, -loc_y, -loc_z: location of black hole [(0.0, 0.0, 0.0)]")
print("\t-j_x, -j_y, -j_z: ang. momentum of black hole [(0.0, 0.0, 1.0)]")
print("\t-tol: tolerance for elliptic solver [1.e-12]")
print("\t-it_max: maximum number of iterations [50]")
print("For example, to construct data with x_out = 6.0, call")
print("\tpython3 puncture.py -x_out 6.0")
if __name__ == '__main__':
main()