-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain.py
156 lines (118 loc) · 5.11 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
from __future__ import print_function, division
import json
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
from matplotlib import pyplot as plt
import time
import os
import copy
#from cross_entropy import CrossEntropyLoss
#from utils import AverageMeter, VisdomLinePlotter
#from sampler import ImbalancedDatasetSampler
input_dim = 224 # The input dimension for ResNet is 224
data_transforms = {
'train': transforms.Compose([
transforms.RandomResizedCrop(input_dim),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'val': transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(input_dim),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
with open("hyper_params.json") as hp:
data = json.load(hp)
root_dir = data["root_directory"]
num_classes = data["num_classes"]
num_epochs = data["num_epochs"]
batch_size = data["batch_size"]
num_workers = data["num_workers"]
lr = data["learning_rate"]
optim_name = data["optimizer"]
momentum = data["momentum"]
step_size = data["step_size"]
gamma = data["gamma"]
image_datasets = {x: datasets.ImageFolder(os.path.join(root_dir, x),
data_transforms[x])
for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size,
shuffle=False, num_workers=num_workers)
for x in ['train', 'val']}
#train_loaders = torch.utils.data.DataLoader(image_datasets['train'], batch_size = batch_size, sampler = sampler, shuffle = False, num_workers = num_workers)
#test_loaders = torch.utils.data.DataLoader(image_datasets['val'], batch_size = batch_size, shuffle = False, num_workers = num_workers)
#dataloaders = {'train':train_loaders,'val':test_loaders}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_names = image_datasets['train'].classes
class_map={}
for x in range (0,len(class_names)):
class_map[x]=class_names[x]
with open('class_mapping.json', 'w') as outfile:
json.dump(class_map, outfile, indent = 4)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print (device)
#device = torch.device("cpu")
def save_models(epochs, model):
print()
torch.save(model.state_dict(), "./models/trained.model")
print("****----Checkpoint Saved----****")
print()
def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('_' * 15)
for phase in ['train', 'val']:
if phase == 'train':
scheduler.step()
model.train()
else:
model.eval()
running_loss = 0.0
running_corrects = 0
#losses = utils.AverageMeter()
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
#losses.update(loss.data.cpu().numpy(), labels.size(0))
if phase == 'train':
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc))
if phase == 'train' and epoch_acc > best_acc:
save_models(epoch,model)
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
#plotter.plot('loss',phase,'Class Loss',epoch,losses.avg)
#plotter.plot('acc',phase,'Class Accuracy',epoch,epoch_acc)
print('Best val Acc: {:4f}'.format(best_acc))
model.load_state_dict(best_model_wts)
return model
model_ft = models.resnet50(pretrained=True)
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs, num_classes)
model_ft = model_ft.to(device)
criterion = nn.CrossEntropyLoss()
optimizer_ft = optim.SGD(model_ft.parameters(), lr=lr, momentum=momentum)
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=step_size, gamma=gamma)
#plotter = utils.VisdomLinePlotter(env_name = 'Classification Test')
model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler,num_epochs=num_epochs)