-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
246 lines (209 loc) · 6.17 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
"""
Main entry of Dash app
"""
import io
import pickle
import base64
import numpy as np
import pandas as pd
import requests as rq
import plotly.express as px
import dash_bootstrap_components as dbc
from PIL import Image
from sklearn.model_selection import RandomizedSearchCV
from dash import Dash, dcc, html, Input, Output, State
TF_API = "https://dsi-weather-predictor-tf.herokuapp.com/predict"
ML_PIXELS = 50
CNN_PIXELS = 200
CLASSES = {
"sunny": 0,
"cloudy": 1,
"foggy": 2,
"rainy": 3,
"snowy": 4,
}
# Load ML and DL models
with open("./code/tunned_xgb_random_result.pickle", "rb") as file:
tunned_xgb_random_result: RandomizedSearchCV = pickle.load(file)
# Setup Dash
external_stylesheets = ["https://codepen.io/chriddyp/pen/bWLwgP.css"]
app = Dash(
__name__,
# external_stylesheets=external_stylesheets,
external_stylesheets=[dbc.themes.BOOTSTRAP],
suppress_callback_exceptions=True,
)
server = app.server
upload_style = {
"width": "100%",
"height": "60px",
"lineHeight": "60px",
"borderWidth": "1px",
"borderStyle": "dashed",
"borderRadius": "10px",
"textAlign": "center",
"margin": "10px",
}
row_content = [
dbc.Col(html.Div("One of two columns"), width=4),
dbc.Col(html.Div("One of two columns"), width=4),
]
row = html.Div(
[
dbc.Row(
row_content,
justify="center",
),
dbc.Row(
row_content,
justify="end",
),
]
)
# Read external files
with open("./pages/Binary.md") as file:
binary_md = file.read()
with open("./pages/CNN.md") as file:
cnn_md = file.read()
with open("./README.md") as file:
README = file.read()
app.layout = dbc.Container(
[
# row,
dcc.Markdown(README),
html.H3("To start select the way you want to predict."),
# Loading indicator
dcc.Loading(
id="loading",
type="default",
),
# tabs
dcc.Tabs(
id="main_tabs",
value="binary_tab",
children=[
dcc.Tab(label="Binary Predictor", value="binary_tab"),
dcc.Tab(label="CNN Predictor", value="cnn_tab"),
],
),
# tabs content
html.Div(id="tabs_content"),
]
)
def construct_html_image(image, filename):
return html.Div(
[
html.H5("Original Image"),
html.P(filename),
dcc.Graph(figure=px.imshow(image)),
html.Hr(),
]
)
@app.callback(Output("tabs_content", "children"), Input("main_tabs", "value"))
def render_main_tabs(tab):
"""Callback to render main_tabs"""
main_body = [
dcc.Upload(
id="upload1",
children=html.Div(
[
"Drag and Drop or ",
html.A("Select an Image"),
]
),
style=upload_style,
accept="image/jpg,image/jpeg",
),
html.Div(
dbc.Button("Predict", id="predict_btn1", color="primary"),
className="d-grid gap-2 col-4 mx-auto",
),
html.Div(id="output_image", className="text-center"),
html.H5("Processed Image"),
html.Div(id="output_fig"),
dbc.Row(
[
dbc.Col(width=5),
dbc.Col(id="output_table", width=2),
dbc.Col(width=5),
]
),
]
if tab == "binary_tab":
return [dcc.Markdown(binary_md)] + main_body
return [dcc.Markdown(cnn_md)] + main_body
table_header = [
html.Thead(html.Tr([html.Th("Class"), html.Th("Probability")]))
]
@app.callback(
Output("loading", "children"),
Output("output_image", "children"),
Output("output_table", "children"),
Output("output_fig", "children"),
Input("predict_btn1", "n_clicks"),
State("upload1", "contents"),
State("upload1", "filename"),
State("main_tabs", "value"),
running=[
(Output("predict_btn1", "disabled"), True, False),
],
)
def upload_process_image(n_clicks, content, filename, tab):
if content is not None:
# decode base64 image into IOByte
text = content.removeprefix("data:image/jpeg;base64,")
pil_img = Image.open(io.BytesIO(base64.b64decode(text)))
if tab == "binary_tab":
img = (
np.asarray(pil_img.convert("L").resize((ML_PIXELS, ML_PIXELS)))
/ 255
)
prob = tunned_xgb_random_result.predict_proba(
[img.flatten()]
).flatten()
prob = np.round(prob * 100, 1)
row1 = html.Tr([html.Td("Sunny"), html.Td(str(prob[0]))])
row2 = html.Tr([html.Td("Cloudy"), html.Td(str(prob[1]))])
table = dbc.Table(
table_header + [html.Tbody([row1, row2])], bordered=True
)
fig = px.imshow(np.asarray(img), color_continuous_scale="gray")
return (
None,
construct_html_image(pil_img, filename),
table,
dcc.Graph(figure=fig),
)
if tab == "cnn_tab":
res = rq.post(TF_API, json={'image': text})
if not res.ok:
raise Exception("Not valid data")
df = pd.DataFrame(
{
"Class": CLASSES.keys(),
"Probability": [
round(x * 100, 1) for x in res.json()['result']
],
},
).sort_values("Probability", ascending=False)
img = (
np.asarray(
pil_img.convert("RGB").resize((CNN_PIXELS, CNN_PIXELS))
)
/ 255
)
fig = px.imshow(np.asarray(img))
return (
None,
construct_html_image(pil_img, filename),
dbc.Table.from_dataframe(
df,
striped=True,
bordered=True,
hover=True,
),
dcc.Graph(figure=fig),
)
return (None,) * 4
if __name__ == "__main__":
app.run_server(debug=True)