forked from navidsalahian/DANMF_CRFR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
41 lines (35 loc) · 1.2 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import numpy as np
from scipy import io
from sklearn.model_selection import train_test_split
from sklearn.neighbors import NearestNeighbors
from sklearn.metrics import mean_squared_error, pairwise_distances
import pandas as pd
def normalize(X, n):
Xmin = np.min(X, axis=1)
Xmax = np.max(X, axis=1)
mmin = np.matlib.repmat(Xmin.T, n, 1)
mmax = np.matlib.repmat(Xmax.T, n, 1)
Xu = X - mmin.T
Xd = mmax.T - mmin.T
X = Xu / np.maximum(Xd, 10**-10)
return X.T
def preproccessing(args):
print("\nPre-processing started.\n")
data = io.loadmat(args.dataset_path)
X = data['X']
# get real labels
Y = data['Y']
d, n = X.shape
near_n = NearestNeighbors(n_neighbors=args.k_neigh, metric='euclidean').fit(X.T)
S = np.zeros((n, n))
dist, indices = near_n.kneighbors(X.T)
indices = indices[:, 1:]
dist = dist[:, 1:]
for i in range(indices.shape[0]):
for j in range(indices.shape[1]):
S[i, indices[i, j]] = np.exp(-(dist[i, j] ** 2) / args.delta) # Heat kernel similarity
D = np.sum(S, axis=1)
D = np.diag(D)
L = D - S
data = {'X': X, 'Y': Y, 'D': D, 'S': S, 'L': L}
return data