Skip to content

Latest commit

 

History

History
87 lines (71 loc) · 5.87 KB

README.md

File metadata and controls

87 lines (71 loc) · 5.87 KB

Datasets

Download our hdf5 datasets (e.g. outdoor_64). The script will first download outdoor_64.zip, and then unzip it into outdoor_64.hdf5).

bash ./datasets/scripts/download_hdf5_dataset.sh outdoor_64

Sketch datasets

Download the sketch datasets (e.g. sketch_shoes_64)

Train a DCGAN model

  • Install the following python libraries:

    sudo pip install tqdm
    sudo pip install h5py
    sudo pip install git+git://github.com/mila-udem/fuel.git
  • Train the model with a hdf5 file. (e.g. shoes_64.hdf5)

    • Go the training code directory:
    cd train_dcgan
    • Define the model parameters in train_dcgan_config.py file.
    • Train a DCGAN model:
    THEANO_FLAGS='device=gpu0, floatX=float32, nvcc.fastmath=True' python train_dcgan.py --model_name shoes_64

    By default, the training code will create a directory ./cache/, and store all the generated samples, webpage, and model checkpoints in the directory.

    • Estimate the batchnorm parameters for DCGAN:
    THEANO_FLAGS='device=gpu0, floatX=float32, nvcc.fastmath=True' python batchnorm_dcgan.py --model_name shoes_64
    • (Optionally) Train an inverting model to predict z from x:
    THEANO_FLAGS='device=gpu0, floatX=float32, nvcc.fastmath=True' python train_predict_z.py --model_name shoes_64
    • (Optionally) Estaimate the batchnorm parameters for the inverting model:
    THEANO_FLAGS='device=gpu0, floatX=float32, nvcc.fastmath=True' python batchnorm_predict_z.py --model_name shoes_64
    • Pack the model:
    python pack_model.py --model_name shoes_64 --output_model shoes_64.dcgan_theano
  • Train a model on your own dataset

    • Run the script to create a hdf5 file from an image collection (see python create_hdf5.py --help for more details):
    python create_hdf5.py --dataset_dir YOUR_OWN_FOLDER --width 64 --mode dir --channel 3 --hdf5_file images.hdf5

Train a generative model (e.g. VAE) based on Theano

The current design of our software follows: ui python class (e.g. gui_draw.py) => python wrapper for constrained optimization (constrained_opt.py) => Theano implementation of constrained optimization (constrained_opt_theano.py) => deep generative model implemented in Theano (e.g. dcgan_theano.py). To incorporate your own generative model, you need to create a new python class (e.g. vae_theano.py) under model_def folder with the same interface of dcgan_theano.py, and specify --model_type vae_theano in the command line.

Train a generative model based on Tensorflow

we are working on a tensorflow based optimization class (i.e. constrained_opt_tensorflow.py) now. Once the code is released, you can create your own tensorflow model class (e.g. dcgan_tensorflow.py) under model_def folder.