forked from junyanz/iGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconstrained_opt.py
266 lines (231 loc) · 9.34 KB
/
constrained_opt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
from __future__ import print_function
from time import time
from lib.rng import np_rng
import numpy as np
import sys
from lib import utils
from PyQt4.QtCore import *
class Constrained_OPT(QThread):
def __init__(self, opt_solver, batch_size=32, n_iters=25, topK=16, morph_steps=16, interp='linear'):
QThread.__init__(self)
self.nz = 100
self.opt_solver = opt_solver
self.topK = topK
self.max_iters = n_iters
self.fixed_iters = 150 # [hack] after 150 iterations, do not change the order of the results
self.batch_size = batch_size
self.morph_steps = morph_steps # number of intermediate frames
self.interp = interp # interpolation method
# data
self.z_seq = None # sequence of latent vector
self.img_seq = None # sequence of images
self.im0 = None # initial image
self.z0 = None # initial latent vector
self.prev_z = self.z0 # previous latent vector
# constraints
self.constraints = None
# current frames
self.current_ims = None # the images being displayed now
self.iter_count = 0
self.iter_total = 0
self.to_update = False
self.to_set_constraints = False
self.order = None
self.init_constraints() # initialize
self.init_z() # initialize latent vectors
self.just_fixed = True
self.weights = None
def is_fixed(self):
return self.just_fixed
def update_fix(self):
self.just_fixed = False
def init_z(self, frame_id=-1, image_id=-1):
nz = self.nz
n_sigma = 0.5
self.iter_total = 0
# set prev_z
if self.z_seq is not None and image_id >= 0:
image_id = image_id % self.z_seq.shape[0]
frame_id = frame_id % self.z_seq.shape[1]
print('set z as image %d, frame %d' % (image_id, frame_id))
self.prev_z = self.z_seq[image_id, frame_id]
if self.prev_z is None: # random initialization
self.z_init = np_rng.uniform(-1.0, 1.0, size=(self.batch_size, nz))
self.opt_solver.set_smoothness(0.0)
self.z_const = self.z_init
self.prev_zs = self.z_init
else: # add small noise to initial latent vector, so that we can get different results
z0_r = np.tile(self.prev_z, [self.batch_size, 1])
z0_n = np_rng.uniform(-1.0, 1.0, size=(self.batch_size, nz)) * n_sigma
self.z_init = np.clip(z0_r + z0_n, -0.99, 0.99)
self.opt_solver.set_smoothness(5.0)
self.z_const = np.tile(self.prev_z, [self.batch_size, 1])
self.prev_zs = z0_r
self.opt_solver.initialize(self.z_init)
self.just_fixed = True
def update(self): # update ui
self.to_update = True
self.to_set_constraints = True
self.iter_count = 0
self.img_seq = None
def save_constraints(self):
[im_c, mask_c, im_e, mask_e] = self.combine_constraints(self.constraints)
self.prev_im_c = im_c.copy()
self.prev_mask_c = mask_c.copy()
self.prev_im_e = im_e.copy()
self.prev_mask_e = mask_e.copy()
def init_constraints(self):
self.prev_im_c = None
self.prev_mask_c = None
self.prev_im_e = None
self.prev_mask_e = None
def combine_constraints(self, constraints):
if constraints is not None: # [hack]
# print('combine strokes')
[im_c, mask_c, im_e, mask_e] = constraints
if self.prev_im_c is None:
mask_c_f = mask_c
else:
mask_c_f = np.maximum(self.prev_mask_c, mask_c)
if self.prev_im_e is None:
mask_e_f = mask_e
else:
mask_e_f = np.maximum(self.prev_mask_e, mask_e)
if self.prev_im_c is None:
im_c_f = im_c
else:
im_c_f = self.prev_im_c.copy()
mask_c3 = np.tile(mask_c, [1, 1, im_c.shape[2]])
np.copyto(im_c_f, im_c, where=mask_c3.astype(np.bool)) # [hack]
if self.prev_im_e is None:
im_e_f = im_e
else:
im_e_f = self.prev_im_e.copy()
mask_e3 = np.tile(mask_e, [1, 1, im_e.shape[2]])
np.copyto(im_e_f, im_e, where=mask_e3.astype(np.bool))
return [im_c_f, mask_c_f, im_e_f, mask_e_f]
else:
return [self.prev_im_c, self.prev_mask_c, self.prev_im_e, self.prev_mask_e]
def set_constraints(self, constraints):
self.constraints = constraints
def get_z(self, image_id, frame_id):
if self.z_seq is not None:
image_id = image_id % self.z_seq.shape[0]
frame_id = frame_id % self.z_seq.shape[1]
return self.z_seq[image_id, frame_id]
else:
return None
def get_image(self, image_id, frame_id, useAverage=False):
if self.to_update:
if self.current_ims is None or self.current_ims.size == 0:
return None
else:
image_id = image_id % self.current_ims.shape[0]
if useAverage and self.weights is not None:
return utils.average_image(self.current_ims, self.weights) # get averages
else:
return self.current_ims[image_id]
else:
if self.img_seq is None:
return None
else:
frame_id = frame_id % self.img_seq.shape[1]
image_id = image_id % self.img_seq.shape[0]
if useAverage and self.weights is not None:
return utils.average_image(self.img_seq[:, frame_id, ...], self.weights)
else:
return self.img_seq[image_id, frame_id]
def get_images(self, frame_id):
if self.to_update:
return self.current_ims
else:
if self.img_seq is None:
return None
else:
frame_id = frame_id % self.img_seq.shape[1]
return self.img_seq[:, frame_id]
def get_num_images(self):
if self.img_seq is None:
return 0
else:
return self.img_seq.shape[0]
def get_num_frames(self):
if self.img_seq is None:
return 0
else:
return self.img_seq.shape[1]
def get_current_results(self):
return self.current_ims
def run(self): # main function
time_to_wait = 33 # 33 millisecond
while (1):
t1 = time()
if self.to_set_constraints: # update constraints
self.to_set_constraints = False
if self.constraints is not None and self.iter_count < self.max_iters:
self.update_invert(constraints=self.constraints)
self.iter_count += 1
self.iter_total += 1
if self.iter_count == self.max_iters:
self.gen_morphing(self.interp, self.morph_steps)
self.to_update = False
self.iter_count += 1
t_c = int(1000 * (time() - t1))
print('update one iteration: %03d ms' % t_c, end='\r')
sys.stdout.flush()
if t_c < time_to_wait:
self.msleep(time_to_wait - t_c)
def update_invert(self, constraints):
constraints_c = self.combine_constraints(constraints)
gx_t, z_t, cost_all = self.opt_solver.invert(constraints_c, self.z_const)
order = np.argsort(cost_all)
if self.topK > 1:
cost_sort = cost_all[order]
thres_top = 2 * np.mean(cost_sort[0:min(int(self.topK / 2.0), len(cost_sort))])
ids = cost_sort - thres_top < 1e-10
topK = np.min([self.topK, sum(ids)])
else:
topK = self.topK
order = order[0:topK]
if self.iter_total < self.fixed_iters:
self.order = order
else:
order = self.order
self.current_ims = gx_t[order]
# compute weights
cost_weights = cost_all[order]
self.weights = np.exp(-(cost_weights - np.mean(cost_weights)) / (np.std(cost_weights) + 1e-10))
self.current_zs = z_t[order]
self.emit(SIGNAL('update_image'))
def gen_morphing(self, interp='linear', n_steps=8):
if self.current_ims is None:
return
z1 = self.prev_zs[self.order]
z2 = self.current_zs
t = time()
img_seq = []
z_seq = []
for n in range(n_steps):
ratio = n / float(n_steps - 1)
z_t = utils.interp_z(z1, z2, ratio, interp=interp)
seq = self.opt_solver.gen_samples(z0=z_t)
img_seq.append(seq[:, np.newaxis, ...])
z_seq.append(z_t[:, np.newaxis, ...])
self.img_seq = np.concatenate(img_seq, axis=1)
self.z_seq = np.concatenate(z_seq, axis=1)
print('generate morphing sequence (%.3f seconds)' % (time() - t))
def reset(self):
self.prev_z = self.z0
self.init_z()
self.init_constraints()
self.just_fixed = True
self.z_seq = None
self.img_seq = None
self.constraints = None
self.current_ims = None
self.to_update = False
self.order = None
self.to_set_constraints = False
self.iter_total = 0
self.iter_count = 0
self.weights = None