This repository has been archived by the owner on May 26, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathLibrary.qs
80 lines (71 loc) · 3.08 KB
/
Library.qs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
namespace quantum {
open Microsoft.Quantum.Intrinsic;
open Microsoft.Quantum.Canon;
open Microsoft.Quantum.Arrays;
open Microsoft.Quantum.Measurement;
open Microsoft.Quantum.Diagnostics;
operation HelloQ () : Unit {
Message("Hello, quantum world!");
}
/// # Summary
/// A quantum oracle which implements the following function:
/// f(x₀, …, xₙ₋₁) = Σᵢ (rᵢ xᵢ + (1 - rᵢ)(1 - xᵢ)) modulo 2 for a given bit vector r = (r₀, …, rₙ₋₁).
///
/// # Input
/// ## r
/// A bit vector of length N
/// ## x
/// N qubits in arbitrary state |x⟩ (input register)
/// ## y
/// A qubit in arbitrary state |y⟩ (output qubit)
operation ApplyProductWithNegationFunction (vector : Bool[], controls : Qubit[], target : Qubit)
: Unit is Adj {
for ((bit, control) in Zip(vector, controls)) {
(ControlledOnInt(bit ? 1 | 0, X))([control], target);
}
}
/// # Summary
/// Reconstructs the parameters of the oracle in a single query
///
/// # Input
/// ## N
/// The number of qubits in the input register N for the function f
/// ## oracle
/// A quantum operation which implements the oracle |x⟩|y⟩ -> |x⟩|y ⊕ f(x)⟩, where
/// x is an N-qubit input register, y is a 1-qubit answer register, and f is a Boolean function.
/// The function f implemented by the oracle can be represented as
/// f(x₀, …, xₙ₋₁) = Σᵢ (rᵢ xᵢ + (1 - rᵢ)(1 - xᵢ)) modulo 2 for some bit vector r = (r₀, …, rₙ₋₁).
///
/// # Output
/// A bit vector r which generates the same oracle as the given one
/// Note that this doesn't have to be the same bit vector as the one used to initialize the oracle!
operation ReconstructOracleParameters(N : Int, oracle : ((Qubit[], Qubit) => Unit)) : Bool[] {
using ((x, y) = (Qubit[N], Qubit())) {
// apply oracle to qubits in all 0 state
oracle(x, y);
// f(x) = Σᵢ (rᵢ xᵢ + (1 - rᵢ)(1 - xᵢ)) = 2 Σᵢ rᵢ xᵢ + Σᵢ rᵢ + Σᵢ xᵢ + N = Σᵢ rᵢ + N
// remove the N from the expression
if (N % 2 == 1) {
X(y);
}
// now y = Σᵢ rᵢ
// measure the output register
let m = MResetZ(y);
// before releasing the qubits make sure they are all in |0⟩ state
ResetAll(x);
return m == One
? ConstantArray(N, false) w/ 0 <- true
| ConstantArray(N, false);
}
}
/// # Summary
/// Instantiates the oracle and runs the parameter restoration algorithm.
operation RunAlgorithm(bits : Bool[]) : Bool[] {
Message("Hello, quantum world!");
// construct an oracle using the input array
let oracle = ApplyProductWithNegationFunction(bits, _, _);
DumpMachine();
// run the algorithm on this oracle and return the result
return ReconstructOracleParameters(Length(bits), oracle);
}
}