-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplot_validation.py
109 lines (100 loc) · 3.7 KB
/
plot_validation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
def plot_validation(name_csv_database: str, savefig: bool = False, plots_icra_video: bool = False) -> None:
df = pd.read_csv(name_csv_database)
plt.rcParams["pdf.fonttype"] = 42
plt.rcParams["ps.fonttype"] = 42
list_drones = ["bix3", "opt1", "opt2", "opt3", "opt4"]
list_color = ["tab:orange", "tab:blue", "tab:blue", "tab:blue", "tab:blue", "tab:green", "tab:green"]
list_color = ["#D62728", "#FF7F0E", "#CBBF5F", "#15B7C3", "#2CA02C"]
for drone in list_drones:
if drone not in df["name_drone"].values:
list_drones.remove(drone)
df["energy_normalized"] = df["energy"] / (2 * df["distance"])
df["time_normalized"] = df["time"] / (2 * df["distance"])
df["drone_id"] = df["name_drone"].apply(lambda x: list_drones.index(x))
time_decrease = (
100
- (
df.groupby(["drone_id"])["time_normalized"].mean()[1:]
/ df.groupby(["drone_id"])["time_normalized"].mean()[0]
).values
* 100
)
energy_decrease = (
100
- (
df.groupby(["drone_id"])["energy_normalized"].mean()[1:]
/ df.groupby(["drone_id"])["energy_normalized"].mean()[0]
).values
* 100
)
print(f"time decrease: {time_decrease.min():.0f} - {time_decrease.max():.0f}")
print(f"energy decrease: {energy_decrease.min():.0f} - {energy_decrease.max():.0f}")
# boxplot energy
if plots_icra_video:
plt.figure(figsize=(4.5, 4), dpi=600)
else:
plt.figure(figsize=(2.8, 2))
sns.violinplot(
x="drone_id", y="energy_normalized", data=df, inner=None, linewidth=0, saturation=0.4, palette=list_color, cut=0
)
sns.boxplot(
x="drone_id",
y="energy_normalized",
data=df,
width=0.3,
boxprops={"zorder": 2},
showfliers=False,
palette=list_color,
)
plt.gca().set(xlabel=None)
plt.ylabel("[J/m]")
if plots_icra_video:
plt.title("energy consumption (normalised)")
plt.xticks(np.arange(len(list_drones)), list_drones, rotation=0)
plt.ylim(0, 6.5)
plt.tight_layout()
plt.grid(axis="y", color="0.9")
plt.gca().set_axisbelow(True)
if savefig:
plt.savefig("boxplot_energy_normalized.png", bbox_inches="tight")
plt.savefig("boxplot_energy_normalized.pdf", bbox_inches="tight")
# boxplot time
# boxplot energy
if plots_icra_video:
plt.figure(figsize=(4.5, 4), dpi=600)
else:
plt.figure(figsize=(2.8, 2))
sns.violinplot(
x="drone_id", y="time_normalized", data=df, inner=None, linewidth=0, saturation=0.4, palette=list_color, cut=0
)
sns.boxplot(
x="drone_id",
y="time_normalized",
data=df,
width=0.3,
boxprops={"zorder": 2},
showfliers=False,
palette=list_color,
)
plt.gca().set(xlabel=None)
plt.ylabel("[s/m]")
if plots_icra_video:
plt.title("mission completion time (normalised)")
plt.xticks(np.arange(len(list_drones)), list_drones, rotation=0)
plt.ylim(0.06, 0.155)
plt.tight_layout()
plt.grid(axis="y", color="0.9")
plt.gca().set_axisbelow(True)
if savefig:
plt.savefig("boxplot_time_normalized.png", bbox_inches="tight")
plt.savefig("boxplot_time_normalized.pdf", bbox_inches="tight")
plt.show()
if __name__ == "__main__":
# Script for plotting the results of `run_validation.py`
# If you leave the code unchanged, it will plot the results from the paper (figure 9).
# If you want to plot your own results, change the path to the CSV file.
plot_validation("result/mt_2024-02-22_10h31m37s.csv", True, False)